SciELO - Scientific Electronic Library Online

 
vol.18 issue4Sliding Windows by Blocks for Online Wavelet Discrete Transform ImplementationSupport for Starting Collaboration in Distributed Software Development through Collaborative Working Spheres author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.4 México Oct./Dec. 2014

http://dx.doi.org/10.13053/CyS-18-4-1920 

Artículos regulares

 

Estudio de la dinámica global para un modelo de Evasion-Inmune de un tumor cancerígeno

 

Study of the Global Dynamics for a Tumor Immune-Evasion System

 

Paul A. Valle1, Luis N. Coria2, and Konstantin E. Starkov1

 

1 Centro de Investigación y Desarrollo de Tecnología Digital (CITEDI-IPN), Instituto Politécnico Nacional, México. pvallet1200@alumno.ipn.mx, luis.coria@gmail.com

2 Instituto Tecnológico de Tijuana (ITT), México. kstarkov@ipn.mx

 

Article received on 10/12/2013.
Accepted on 06/10/2014.

 

Resumen

En este artículo se estudia la dinámica global del modelo de Evasión-Inmune presentado por Arciero, Jackson y Kirschner [1], el cual describe la interacción entre células efectoras, células cancerígenas y las citocinas IL - 2 y TGF - β en el sitio del tumor. El sistema modela distintos comportamientos, como lo son: puntos de equilibrio, órbitas periódicas y ciclos límite estables. Utilizando el método de Localización de Conjuntos Compactos Invariantes se logra definir un dominio en el espacio de estados donde se localizan todas las dinámicas que exhibe el modelo de Evasión-inmune. La localización de dicho dominio es importante debido a que proporciona información sobre la salud del individuo en corto y largo plazo. Los límites de tal dominio representan los valores mínimos y máximos de las variables de estado y se expresan mediante desigualdades algebraicas dadas por una combinación de los parámetros del sistema. Adicionalmente, mediante una función candidata de Lyapunov, se demuestra que la región de localización es un dominio positivamente invariante, lo que permite asegurar que dada cualquier condición inicial, las trayectorias del sistema no divergen. Finalmente, se presentan simulaciones numéricas y se realiza un análisis de las posibles implicaciones biológicas de los resultados obtenidos.

Palabras clave: Conjunto compacto invariante, dominio acotado positivamente invariante, Lyapunov, cáncer, sistema biológico.

 

Abstract

In this paper we study the global dynamics for a Tumor Immune-Evasion model proposed by Arciero, Jackson and Kirschner [1], which describes the interaction between effector cells, cancer cells, and the cytokines IL -2 and TGF β in the tumor site. This system describes different behaviors such as equilibrium points, periodic orbits, and stable limit cycles. By using the Localization of Compact Invariant Sets method, we define a domain where all the dynamics of the Immune-Evasion system are located. The localization of these sets is important because they provide information about the individual's health in the short and long term. The domain boundaries are expressed by inequalities depending on the system's parameters and represent the minimum and maximum values of the system variables. Furthermore, by taking a Lyapunov candidate function, we demonstrate that the localizing region is a positively invariant domain. This ensures that for any initial condition outside this domain, the trajectories of the system will not diverge. Finally, we present numerical simulations and realize an analysis of possible biological implications of our results.

Keywords: Compact invariant set, bounded positively invariant domain, Lyapunov function, cancer, biological system.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. Arciero, J., Jackson, T., & Kirschner, D. (2004). A mathematical model of tumor-immune evasion and siRNA treatment. Discrete and Continuous Dynamical Systems Series B, Vol. 4, No. 1, pp. 39-58.         [ Links ]

2. Bunimovich-Mendrazitsky, S., Shochat, E., & Stone, L. (2007). Mathematical model of BCG immunotherapy in superficial bladder cancer. Bulletin of Mathematical Biology, Vol. 69, No. 6, pp. 1847-1870.         [ Links ]

3. Coria, L. N. (2013). Global dynamics of the hastings-powell system. Mathematical Problems in Engineering.

4. d'Onofrio, A. (2005). A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D: Nonlinear Phenomena, Vol. 208, No. 3, pp. 220-235.         [ Links ]

5. Enderling, H., Almog, N., & Hlatky, L. (2013). Systems biology of tumor dormancy, volume 734. Springer.         [ Links ]

6. Instituto Nacional de Estadística y Geografía (2013). Estadísticas a propósito del día mundial contra el cáncer. Disponible en: www.inegi.org.mx.         [ Links ]

7. Joshi, B., Wang, X., Banerjee, S., Tian, H., Matzavinos, A., & Chaplain, M. A. (2009). On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. Journal of Theoretical Biology, Vol. 259, No. 4, pp. 820-827.         [ Links ]

8. Khalil, H. K. (2002). Nonlinear Systems, volume 3. Prentice Hall Upper Saddle River.         [ Links ]

9. Kirschner, D. & Panetta, J. C. (1998). Modeling immunotherapy of the tumor - immune interaction. Journal of Mathematical Biology, Vol. 37, No. 3, pp. 235-252.         [ Links ]

10. Kirschner, D. & Tsygvintsev, A. (2009). On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences and Engineering, Vol. 6, No. 3, pp. 573-583.         [ Links ]

11. Krishchenko, A. (2005). Localization of invariant compact sets of dynamical systems. Differential Equations, Vol. 41, No. 12, pp. 1669-1676.         [ Links ]

12. Krishchenko, A. P. & Starkov, K. E. (2006). Localization of compact invariant sets of the Lorenz system. Physics Letters A, Vol. 353, No. 5, pp. 383-388.         [ Links ]

13. Kronik, N., Kogan, Y., Elishmereni, M., Halevi-Tobias, K., Vuk-Pavlović, S., & Agur, Z. (2010). Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS One, Vol. 5, No. 12, pp. e15482.         [ Links ]

14. Lu, J. J. & Brady, L. W. (2008). Radiation Oncology: An Evidence-Based Approach. Springer.         [ Links ]

15. Owen, M. & Sherratt, J. (1998). Modelling the macrophage invasion of tumors: Effects on growth and composition. IMA J Math Appl Med Biol, Vol. 15, pp. 165-185.         [ Links ]

16. Page, K. & Uhr, J. (2005). Mathematical models of cancer dormancy. Leukemia & Lymphoma, Vol. 46, No. 3, pp. 313-327.         [ Links ]

17. Perko, L. (2001). Differential equations and dynamical systems, volume 7. Springer, third edition.         [ Links ]

18. Perry, M. C. (2008). The Chemotherapy Source Book. Lippincott Williams and Wilkins.         [ Links ]

19. Ruddon, R. W. (2007). Cancer Biology. Oxford University Press.         [ Links ]

20. Starkov, K. E. & Coria, L. N. (2012). Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy. Nonlinear Analysis: Real World Applications, Vol. 14, No. 3, pp. 1425-1433.         [ Links ]

21. Starkov, K. E. & Gamboa, D. (2013). Localization of compact invariant sets and global stability in analysis of one tumor growth model. Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.3023.

22. Starkov, K. E. & Krishchenko, A. P. (2014). On the global dynamics of one cancer tumour growth model. Communications in Nonlinear Science and Numerical Simulation, Vol. 19, No. 5, pp. 1486-1495.         [ Links ]

23. Starkov, K. E. & Plata-Ante, C. (2014). On the global dynamics of the cancer AIDS-related mathematical model. Kybernetika, In press.

24. Starkov, K. E. & Pogromsky, A. Y. (2013). On the global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions. International Journal of Bifurcation and Chaos, Vol. 23, No. 02.         [ Links ]

25. Starkov, K. E. & Villegas, A. (2014). On some dynamical properties of a seven-dimensional cancer model with immunotherapy. International Journal of Bifurcation and Chaos, Vol. 24, No. 02.         [ Links ]

26. Subsecretaría de Prevención y Promoción de la Salud (2013). Los 5 tipos de cáncer que más afectan a mexicanos. Disponible en: http://www.spps.gob.mx.         [ Links ]

27. World Health Organization (2013). Cancer. Available in: http://www.who.int.         [ Links ]

28. Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, Vol. 8, No. 1, pp. 59-73.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License