SciELO - Scientific Electronic Library Online

vol.18 issue1Mutating HIV Protease Protein Using Ant Colony Optimization and Fuzzy Cognitive Maps: Drug Susceptibility AnalysisTowards Swarm Diversity: Random Sampling in Variable Neighborhoods Procedure Using a Lévy Distribution author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.1 México Jan./Mar. 2014 



Eyelid Detection Method Based on a Fuzzy Multi-Objective Optimization


Método de detección de parpados basado en un enfoque difuso de optimización multiobjetivo


Yuniol Alvarez-Betancourt1 and Miguel Garcia-Silvente2


1 Department of Computer Sciences, University of Cienfuegos, Cuba.

2 Department of Computer Sciences and Artificial Intelligence, University of Granada, Spain.



Iris recognition is one of the most robust human identification methods. In order to carry out accurate iris recognition, many factors of image quality should be born in mind. The eyelid occlusion is a quality factor that may significantly affect the accuracy. In this paper we introduce a new fuzzy multi-objective optimization approach based on the eyelid detection method. This method obtains the eyelid contour which represents the best solution of Pareto-optimal set taking into account five optimized objectives. This proposal is composed of three main stages, namely, gathering eyelid contour information, filtering eyelid contour and tracing eyelid contour. The results of the proposal are evaluated in a verification mode and thus a few performance measures are generated in order to compare them with other works of the state of the art. Thereby, the proposed method outperforms other approaches and it is very useful for implementing real applications as well.

Keywords. Eyelid detection, eyelid location, iris recognition, fuzzy systems, multi-objective optimization, combinatorial optimization.



El reconocimiento del iris es considerado como uno de los métodos más robustos de identificación de humanos. Para realizar el reconocimiento con precisión se deben tener en cuenta varios factores de calidad de la imagen. La oclusión del párpado es un factor de calidad que afecta significativamente la precisión. En este artículo se presenta un nuevo método para detectar las oclusiones del párpado basado en un enfoque difuso de optimización con múltiples objetivos. Este método está compuesto por tres etapas principales: recopilación de información, filtrado y trazado del contorno del párpado. Los resultados del método propuesto son evaluados en un esquema de verificación y de esta forma se estiman algunas medidas de desempeño que son comparadas con otros trabajos del estado del arte. El método propuesto supera otros enfoques propuestos y resulta muy útil en la implementación de aplicaciones reales.

Palabras clave. Detección de párpados, localización de párpados, reconocimiento del iris, sistemas difusos, optimización multiobjetivo, optimización combinatorial.





1. Roy, K., Bhattacharya, P., & Suen, C.Y. (2011). Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs. Engineering Applications of Artificial Intelligence, 24(3), 458-475.         [ Links ]

2. Rahulkar, A.D., Jadhav, D.V., & Holambe, R.S. (2011). Fast discrete curvelet transform based anisotropic iris coding and recognition using k-out-of-n: A fused post-classifier. Machine Vision and Applications, 23(6), 1115-1127.         [ Links ]

3. Rossant, F., Mikovicova, B., Adam, M., & Trocan, M. (2010). A Robust Iris Identification System Based on Wavelet Packet Decomposition and Local Comparisons of the Extracted Signatures. EURASIP Journal on Advances in Signal Processing, 2010, article No. 12.         [ Links ]

4. Alvarez-Betancourt, Y. & Garcia-Silvente, M. (2010). A fast Iris Location based on aggregating gradient approximation using QMA-OWA operator. 2010 IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 1-8.         [ Links ]

5. Tae-Hong, M. & Rae-Hong, P. (2009). Eyelid and eyelash detection method in the normalized iris image using the parabolic Hough model and Otsu's thresholding method. Pattern Recognition Letters, 30(12), 1138-1143.         [ Links ]

6. He, Z., Tan, T., Sun, Z., & Qiu, X. (2008). Robust Eyelid, Eyelash and Shadow Localization for Iris Recognition. 15th IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, 265-268.         [ Links ]

7. Monro, D.M., Rakshit, S., & Zhang, D. (2007). DCT-based iris recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 29(4), 586-595.         [ Links ]

8. Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 21-30.         [ Links ]

9. Cui, J., Wang, Y., Tan, T., Ma, L., & Sun, Z. (2004). A fast and robust iris localization method based on texture segmentation. SPIE 5404, Biometric Technology for Human Identification, Orlando, FL, 401-408.         [ Links ]

10. Li, S.Z. & Jain, A.K. (2009). Encyclopedia of Biometrics, New York: Springer.         [ Links ]

11. Bowyer, K.W., Hollingsworth, K., & Flynn, P.J. (2008). Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 110(2), 281-307.         [ Links ]

12. Li, P., & Ma, H. (2012). Iris recognition in non-ideal imaging conditions. Pattern Recognition Letters, 33(8), 1012-1018.         [ Links ]

13. Zuo, J. & Schmid, N.A. (2010). On a methodology for robust segmentation of nonideal iris images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3), 703-718.         [ Links ]

14. Kalka, N.D., Zuo, J., Schmid, N.A., & Cukic, B. (2010). Estimating and fusing quality factors for iris biometric images. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 40(3), 509-524.         [ Links ]

15. Li, P., Liu, X., Xiao, L., & Song., Q. (2010). Robust and accurate iris segmentation in very noisy iris images. Image and Vision Computing, 28(2), 246-253.         [ Links ]

16. Masek, L. (2003). Recognition of Human Iris Patterns for Biometric Identification. Retrieved from        [ Links ]

17. Liu, X.M., Bowyer, K.W., & Flynn, P.J. (2005). Experiments with an improved iris segmentation algorithm. Fourth IEEE Workshop on Automatic Identification, Advanced Technologies, Buffalo, NY, USA, 118-123.         [ Links ]

18. Deb, K. (2005). Multi-Objective Optimization. In E. K. Burke & G. Kendall (Eds.), Search Methodologies: introductory tutorials in optimization and decision support techniques, (273-316), New York: Springer.         [ Links ]

19. CASIA-IrisV4 Image Database Center for Biometrics and Security Research. (2010). Retrieved from         [ Links ]

20. Struc, V. & Pavesic, N. (2010). The Complete Gabor-Fisher Classifier for Robust Face Recognition. EURASIP Journal on Advances in Signal Processing, 2010, Article No. 31.         [ Links ]

21. Sun, Z. & Tan, T. (2009). Ordinal measures for iris recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 31(12), 2211-2226.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License