SciELO - Scientific Electronic Library Online

 
vol.18 issue1Traffic Flow Estimation Using Ant Colony Optimization AlgorithmsEyelid Detection Method Based on a Fuzzy Multi-Objective Optimization author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.1 México Jan./Mar. 2014

http://dx.doi.org/10.13053/CyS-18-1-2014-018 

Artículos

 

Mutating HIV Protease Protein Using Ant Colony Optimization and Fuzzy Cognitive Maps: Drug Susceptibility Analysis

 

Mutación de la proteína proteasa del VIH utilizando optimización basada en colonia de hormigas y mapas cognitivos difusos: análisis de susceptibilidad a fármacos

 

Isel Grau and Gonzalo Nápoles

 

Centro de Estudios de Informática, Universidad Central "Marta Abreu" de Las Villas, Cuba. igrau@uclv.edu.cu, gnapoles@uclv.edu.cu

 

Abstract

Understanding the dynamics of the resistance mechanisms in HIV proteins mutations is a key for optimizing the use of existing antiviral drugs and developing new ones. Several statistical and machine learning techniques have been proposed for predicting the resistance of a mutation to a certain drug using its genotype information. However, the knowledge publicly available for this kind of processing is majorly about resistant sequences, leading to highly imbalanced knowledge bases, which is a serious problem in classification tasks. In previous works, the authors proposed a methodology for modeling an HIV protein as a dynamic system through Fuzzy Cognitive Maps. The adjusted maps obtained not just allow discovering relevant knowledge in the causality among the protein positions and the resistant, but also achieved very competitive performance in terms classification accuracy. Based on these works, in this paper we propose an Ant Colony Optimization based method for generating possible susceptible mutations using the adjusted maps and biological heuristic knowledge. As a result, the mutations obtained allow drug experts to have more information of the behavior of the protease protein whenever a susceptible mutation takes place.

Keywords: HIV, drug resistance, mutations, fuzzy cognitive maps, modeling, ant colony optimization.

 

Resumen

El conocimiento de los mecanismos de resistencia en las mutaciones de las proteínas del VIH es fundamental para optimizar el uso de los fármacos existentes, así como diseñar nuevos medicamentos. Varias técnicas de estadística y aprendizaje automatizado han sido propuestas en la literatura para intentar predecir la resistencia de una mutación a un fármaco determinado usando su información genotípica. Sin embargo el conocimiento disponible públicamente para este tipo de procesamientos está enfocado mayormente a las mutaciones resistentes, lo que provoca bases de conocimiento altamente desbalanceadas que constituyen un serio problema en las tareas de clasificación. En trabajos previos, los autores proponen una metodología para modelar una proteína del VIH como un sistema dinámico a través de Mapas Cognitivos Difusos. Los mapas ajustados obtenidos no solo permiten descubrir conocimiento en la causalidad entre las posiciones de la proteína y la resistencia, sino que alcanza un desempeño competitivo en términos de exactitud de la clasificación. Basado en estos trabajos, en este artículo proponemos un método basado en la técnica de Optimización de Colonias de Hormigas para generar nuevas mutaciones susceptibles utilizando los mapas ajustados y conocimiento biológico heurístico. Como resultado, las mutaciones obtenidas permitirían a los expertos en fármacos contar con mayor información sobre el comportamiento de la proteasa cuando aparece una mutación susceptible.

Palabras clave: VIH, resistencia a fármacos, mutaciones, mapas cognitivos difusos, modelación, optimización basada en colonia de hormigas.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Rhee, S.Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D.L., & Shafer, R.W. (2006). Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proceedings of the National Academic of Sciences of the United States of America, 103(46), 17355-17360.         [ Links ]

2. Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, K., & Selbig, J. (2002). Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 82718276.         [ Links ]

3. Shafer, R.W. (2006). Rationale and Uses of a Public HIV Drug-Resistance Database. Journal of Infectious Diseases, 194(1), 51-58.         [ Links ]

4. López, V., Fernandez, A., del Jesus, M.J., Herrera, F. (2013). A Hierarchical Genetic Fuzzy System Based On Genetic Programming for Addressing Classification with Highly Imbalanced and Borderline Data-sets. Knowledge-Based Systems, 38, 85-104.         [ Links ]

5. Beerenwinkel, N., Lengauer, T., Selbig, J., Schmidt, B., Walter, H., Korn, K., Kaiser, R., & Hoffmann, D. (2001). Geno2pheno: interpreting genotypic HIV drug resistance tests. IEEE Intelligence System, 16(6), 35-41.         [ Links ]

6. Draghici, S. & Potter, R.B. (2003). Predicting HIV drug resistance with neural networks. Bioinformatics, 19(1), 98-107.         [ Links ]

7. Liu, T.F. & Shafer, R.W. (2006). Web Resources for HIV type 1 Genotypic-Resistance Test Interpretation. Clinical Infectious Diseases, 42(11), 1608-1618.         [ Links ]

8. Bonet, I., Garcia, M.M., Saeys, Y., Peer, Y.V., & Grau, R. (2007). Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. Bio-inspired Modeling of Cognitive Tasks. Lecture Notes in Computer Science, 4527, 234-243.         [ Links ]

9. Masso, M. (2012). Prediction of Human Immunodeficiency Virus Type 1 Drug Resistance: Representation of Target Sequence Mutational Patterns via an n-Grams Approach. 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Philadelphia, PA, 1-6.         [ Links ]

10. Grau, I., Nápoles, G., León, M., & Grau, R. (2012) . Fuzzy Cognitive Maps for modelling, predicting and interpreting HIV drug resistance. Advances in Artificial Intelligence - IBERAMIA 2012. Lecture Notes in Computer Science, 7637, 31-40.         [ Links ]

11. Nápoles, G., Grau, I., León, M., & Grau, R. (2013) . Modelling, aggregation and simulation of a dynamic biological system through Fuzzy Cognitive Maps. Advances in Computational Intelligence. Lecture Notes in Computer Science, 7630, 188-199.         [ Links ]

12. Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Machine Studies, 24(1), 65-75.         [ Links ]

13. Papageorgiou, E.I. (2012). Learning Algorithms for Fuzzy Cognitive Maps - A Review Study. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 42(2), 150-163.         [ Links ]

14. Miyazawa, S. & Jernigan, R.L. (1999). Self-Consistent Estimation of Inter-Residue Protein Contact Energies Based on an Equilibrium Mixture Approximation of Residues. Proteins, 34(1), 4968.         [ Links ]

15. Nápoles, G., Grau, I., & Bello, R. (2012). Constricted Particle Swarm Optimization based algorithm for global optimization. Polibits, 46, 511.         [ Links ]

16. Nápoles, G., Grau, I., & Bello, R. (2012). Particle Swarm Optimization with Random Sampling in Variable Neighbourhoods for solving Global Minimization Problems. Swarm Intelligence. Lecture Notes in Computer Science, 7461, 352-354.         [ Links ]

17. Volkenshtein, M.V. (1981). BiophysicsMoscow: Mir.         [ Links ]

18. Grau, I., Nápoles, G., Bonet, I., & García, M.M. (2013). Backpropagation Through Time Algorithm for Training Recurrent Neural Networks Using Variable Length Instances. Computación y Sistemas, 17(1), 15-24.         [ Links ]

19. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29-41.         [ Links ]

20. Stutzle, T. & Hoos, H.H. (2000). MAX-MIN ant system. Future Generation Computer System, 16(8), 889-914.         [ Links ]

21. Shafer, R.W. (2002). Genotypic testing for Human Immunodeficiency Virus type 1 drug resistance. Clinical Microbiology Reviews, 15(2), 247-277.         [ Links ]

22. Johnson, V., Brun-Vézinet, F., Clotet, B., Conway, B., D'Aquila, R.T., Demeter, L.M., Kuritzkes, D.R., Pillay, D., Schapiro, J.M., Telenti, A., & Richman, D.D. (2003). Drug resistance mutation in HIV-1. Topics in HIV Medicine, 11(6), 215-221.         [ Links ]

23. Sing, T., Svicher, V., Beerenwinkel, N., Ceccherini-Silberstein, F., Däumer, M., Kaiser, R., Walter, H., Korn, K., Hoffmann, D., Oette, M., Rockstroh, J.K., Fátkenheuer, G., Perno, C.F., & Lengauer, T. (2005). Characterization of novel HIV drug resistance mutations using clustering, multidimensional scaling and SVM-based feature ranking. Knowledge Discovery in Databases. Lecture Notes in Computer Science, 3721, 285-296.         [ Links ]

24. Woods, M. & Carpenter, G.A. (2007). Neural Network and Bioinformatics Methods for Predicting HIV-1 Protease Inhibitor Resistance (Technical Report 2007-004). Boston, Massachusetts: Boston University.         [ Links ]

25. Brun-Vezinet, F., Costagliola, D., Khaled, M.A., Calvez, V., Clavel, F., Clotet, B., Haubrich, R., Kempf, D., King, M., Kuritzkes, D., Lanier, R., Miller, M., Miller, V., Phillips, A., Pillay, D., Schapiro, J., Scott, J., Shafer, R., Zazzi, M., Zolopa, A., & DeGruttola, V. (2004). Clinically validated genotype analysis: guiding principles and statistical concerns. Antiviral Therapy, 9(4), 465-478.         [ Links ]

26. Van Laethem, K., De Luca, A., Antinori, A., Cingolani, A., Perna, C.F., Vandamme, A.M. (2002). A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1-infected patients. Antiviral Therapy, 7(2), 123-129.         [ Links ]

27. In-Silico Sequence Conversion Tools. http://insilico.net/tools/biology/sequence_conversion.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License