SciELO - Scientific Electronic Library Online

 
vol.17 issue4Harmony Search Algorithm and its Use in Digital Image ProcessingOntology-Driven Semantic Comparison between Geographic Data Sets author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.17 n.4 México Oct./Dec. 2013

 

Artículos regulares

 

On Efficiency of Detection of Subpixel Targets with Hypothesis Dependent Structured Background Power

 

Sobre la eficiencia de detección de objetos subpixeleados con potencia de fondo estructurado que depende de hipótesis

 

Víctor Golikov, Olga Lebedeva, Manuel May Alarcón, Francisco Méndez Martínez, Marco Rodríguez Blanco, and Mayólo Salvador Islas Chuc

 

Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, México. vgolikov@pampano.unacar.mx, olebedeva@pampano.unacar.mx, mmay@pampano.unacar.mx, fmendez@pampano.unacar.mx

 

Article received on 18/03/2012
Accepted on 18/06/2013

 

Abstract

In this paper, matched detector (MD) and matched subspace detector (MSD) are studied when the structured background power is different under the null and the alternative hypotheses. The distributions of two test statistics are derived under these conditions. It has been analytically shown that these detectors can suffer a drastic degradation in performance for background power deviations under alternative hypothesis. We discuss the differences between the performances of these detectors in the case of the structured and unstructured backgrounds with uncorrelated Gaussian noise. The theoretical results are compared with simulated data and good agreement is reported. We present experimental results of small floating object detection on an agitated sea surface using spectral digital video experiments which validate the theoretical results.

Keywords: Hypothesis dependent power, subpixel targets, performance loss.

 

Resumen

El detector acoplado (MD) y el detector de subespacio acoplado (MSD) son estudiados cuando la potencia de fondo estructurado es diferente bajo las hipótesis alternativa y nula. Las distribuciones de las dos pruebas estadísticas son realizadas bajo las mismas condiciones. Ha sido analíticamente demostrado que esos dos detectores pueden sufrir una degradación drástica de su eficiencia para las desviaciones de la potencia de fondo bajo hipótesis alternativas. Se discuten las diferencias entre los rendimientos de esos detectores en el caso de fondos estructurados y no estructurados con ruido Gaussiano no correlacionado. Los resultados teóricos son comparados con los datos simulados y una buena concordancia es reportada. Se presentan resultados experimentales de la detección de objetos pequeños flotando en la superficie agitada del mar, usando el experimento del video digital espectral, que demuestra la validación de los resultados teóricos.

Palabras clave. Potencia que depende de hipótesis, objetos subpixeleados, pérdida de eficiencia.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work has been funded by CONACYT (project number 80994).

 

References

1. Manolakis, D., Siracusa, C., & Shaw, G. (2001). HyperspectralSubpixel Target Detection Using the Linear Mixing Model. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1392-1409.         [ Links ]

2. Chang, C.-I. (2005). Orthogonal Subspace projection (OSP) Revisited: A Comprehensive Study and Analysis. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 502-518.         [ Links ]

3. Thai, B.& Healey, G. (2002). Invariant Subpixel Material Detection in Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 40(3), 599-608.         [ Links ]

4. Bajorski, P. (2007). Analytical Comparison of the Matched Filter and Orthogonal Subspace Projection Detectors for Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 45(7), 2394-2402.         [ Links ]

5. Vincent, F., Besson, O., & Richard, C. (2008).Matched Subspace Detection With Hypothesis Dependent Noise Power. IEEE Transactions on Signal Processing, 56(11), 5713-5718.         [ Links ]

6. Manolakis, D. & Shaw, G. (2002). Detection Algorithms for Hyperspectral Imaging Applications. IEEE Signal Processing Magazine, 19(1), 29-43.         [ Links ]

7. Scharf, L.L. (1991). Statistical Signal processing: Detection, Estimation and Time Series Analysis. Reading, Mass: Addison-Wesley Pub. Co.         [ Links ]

8. Golikov, V., Lebedeva, O., Castillejos-Moreno, A., & Ponomaryov, V.I. (2011). Performance of the Matched Subspace Detector in the case of Subpixel Targets. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E94.A(2), 826-828.         [ Links ]

9. Fuchs, J.J. (2007). A robust matched detector. IEEE Transactions on Signal Processing, 55(11), 5133-5142.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License