SciELO - Scientific Electronic Library Online

 
vol.17 issue4Efficient use of Pivots for Approximate Search in Metric SpacesModel Counting in the 2μ -3MON Syntactic Class author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.17 n.4 México Oct./Dec. 2013

 

Artículos regulares

 

On the NP-Completeness of Computing the Commonality Among the Objects Upon Which a Collection of Agents Has Performed an Action

 

Es NP-completo calcular la comunidad entre los objetos sobre los que una colección de agentes ha realizado una acción

 

Roberto Alonso, Raúl Monroy

 

Department of Computer Science, Tecnologico de Monterrey, Campus Estado de Mexico, Carr. lago de Guadalupe Km 3.5, Atizapan, Estado de Mexico, Mexico. roberto.alonso@itesm.mx, raúlm@itesm.mx

 

Abstract

We prove the NP-completeness of the so-called Social Group Commonality (SGC) problem which queries the commonality among the objects 'touched' by collections of agents while executing an action. Although it naturally arises in several contexts, e.g., in profiling the behavior of a collection of system users, SGC (to the authors' knowledge) has been ignored. Our proof of SGC NP-completeness consists of a Karp reduction from the well-known Longest Common Subsequence (LCS) problem to SGC. We also prove that a special case of SGC which we call 2-SGC, where the commonality among actions is limited to agent pairs, remains NP-complete. For proving NP-completeness of 2-SGC though, our reduction departs from the well-known Hitting Set problem. Finally, we hypothesize that the optimality version of SGC is NP-hard, hinting on how to deal with the proof obligation.

Keywords: Social Group Commonality, complexity theory, social networks, graphs.

 

Resumen

En este trabajo demostramos que el problema que llamamos Comunalidad de grupos sociales (SGC por sus siglas en inglés) es NP-completo. Este problema consulta la comunalidad entre los objetos tocados por una colección de agentes que ejecutan acciones. Aunque se presenta naturalmente en varios contextos e.g., perfilar el comportamiento de un conjunto de usuarios de un sistema, SGC ha sido, acorde al conocimiento de los autores, ignorado. Nuestra demostración consiste en una reducción de Karp a partir del problema conocido como Longest Common Subsequence (LCS). Probamos también que un caso especial, al que llamamos 2-SGC, donde la comunalidad entre las acciones esta limitada a pares de agentes, sigue siendo NP-completo. Para probar 2-SGC, nuestra reducción parte del problema conocido como Hitting Set. Antes de concluir con el articulo, especulamos que la versión de optimización de SGC es NP-duro, dando indicaciones de como realizar la demostración necesaria.

Palabras clave: Comunalidad de grupos sociales, teoría de la complejidad, redes sociales, grafos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgement

This paper has largely benefited from numerous discussions with Luis Angel Trejo-Rodriguez. We thank to the members of the NetSec group at Tecnologico de Monterrey, Estado de Mexico, for their constructive comments on an earlier version of this paper. The first author was supported by CONACYT student scholarship 45904, while the second author was in part supported by CONACyT grant 105698.

 

References

1. Alonso, R., Vazquez, J., Trejo, L., Monroy, R., & Sanchez, E. (2009). How social networks can help detecting ddos attacks on dns servers. In Artificial Intelligence and Applications, Complementary Proceedings of MICAI 2009, 8th Mexican International Conference on Artificial Intelligence. Sociedad Mexicana de Inteligencia Artificial, Guanajuato, Mexico. ISBN 978-607-95367-1-8, 261-270.         [ Links ]

2. Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common subsequence algorithms. In Proceedings of the Seventh International Symposium on String Processing Information Retrieval (SPIRE'00), SPIRE '00. IEEE Computer Society, Washington, DC, USA. ISBN 0-7695-0746-8, 39-48.         [ Links ]

3. Diaz, J., Pottonen, O., Serna, M., & van Leeuwen, E. J. (2012). On the complexity of metric dimension. In Proceedings of the 20th Annual European conference on Algorithms, ESA'12. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-642-33089-6, 419-430. doi:10.1007/978-3-642-33090-2_37.         [ Links ]

4. Dyer, M. & Greenhill, C. (2000). The complexity of counting graph homomorphisms. In Proceedings of the ninth international conference on on Random structures and algorithms. John Wiley & Sons, Inc., New York, NY, USA, 260-289.         [ Links ]

5. Garey, M. R. & Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA. ISBN 0716710455.         [ Links ]

6. Horst, H. (2005). Combining rdf and part of owl with rules: Semantics, decidability, complexity. In Gil, Y., Motta, E., Benjamins, V., & Musen, M., editors, The Semantic Web - ISWC 2005, volume 3729 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. ISBN 978-3-540-29754-3, 668-684. doi:10.1007/11574620_ 48.         [ Links ]

7. Karp, R. (1972). Reducibility among combinatorial problems. In Miller, R. & Thatcher, J., editors, Complexity of Computer Computations. Plenum Press, 85-103.         [ Links ]

8. Liu, W., Chen, L., & Zou, L. (2007). A parallel lcs algorithm for biosequences alignment. In Proceedings of the 2nd international conference on Scalable information systems, InfoScale '07. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium. ISBN 978-1-59593-757-5, 83:1-83:8.         [ Links ]

9. Maier, D. (1978). The complexity of some problems on subsequences and supersequences. J. ACM, 25(2), 322-336. ISSN 0004-5411. doi:10.1145/ 322063.322075.         [ Links ]

10. Mihalcea, R. & Csomai, A. (2007). Wikify!: linking documents to encyclopedic knowledge. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, CIKM '07. ACM, New York, NY, USA. ISBN 978-1-59593-803-9, 233-242. doi:10.1145/1321440.1321475.         [ Links ]

11. Milne, D. & Witten, I. H. (2008). Learning to link with wikipedia. In Proceedings of the 17th ACM conference on Information and knowledge management, CIKM '08. ACM, New York, NY, USA. ISBN 978-1-59593-991-3, 509-518. doi:10.1145/ 1458082.1458150.         [ Links ]

12. Paschos, V. T. (1997). A survey of approximately optimal solutions to some covering and packing problems. ACM Comput. Surv., 29(2), 171-209. ISSN 0360-0300. doi:10.1145/254180.254190.         [ Links ]

13. Schmitt, M. & Martignon, L. (2006). On the complexity of learning lexicographic strategies. J. Mach. Learn. Res., 7, 55-83. ISSN 1532-4435.         [ Links ]

14. Witten, I. H. (2010). Semantic document processing using wikipedia as a knowledge base. In Proceedings of the Focused retrieval and evaluation, and 8th international conference on Initiative for the evaluation of XML retrieval, INEX'09. Springer-Verlag, Berlin, Heidelberg. ISBN 3-642-14555-8, 978-3-642-14555-1, 3-3.         [ Links ]

15. Xu, D., Chen, Y., Xiong, Y., Qiao, C., & He, X. (2006). On the complexity of and algorithms for finding the shortest path with a disjoint counterpart. IEEE/ACM Trans. Netw., 14(1), 147-158. ISSN 1063-6692. doi:10.1109/TNET.2005.863451.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License