SciELO - Scientific Electronic Library Online

vol.17 issue4EditorialEfficient use of Pivots for Approximate Search in Metric Spaces author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.17 n.4 México Oct./Dec. 2013


Artículo invitado


A Semantically-based Lattice Approach for Assessing Patterns in Text Mining Tasks


Un enfoque de lattice basado en semántica para evaluar patrones en tareas de minería de textos


John Atkinson, Alejandro Figueroa, Claudio Pérez


Dept. of Computer Sciences, Faculty of Engineering, Universidad de Concepcion, Chile, Yahoo! Research, Santiago, Chile.,,


Article received on 12/07/2013
Accepted on 25/09/2013.



In this paper, a new approach to automatically assessing patterns in text mining is proposed. It combines corpus based semantics and Formal Concept Analysis in order to deal with semantic and structural properties for concepts discovered in tasks such as generation of association rules. Experiments show the promise of our evaluation method to effectively assess discovered patterns when compared with other state-of-the-artevaluation methods.

Keywords: Text mining, concept lattices, semantic analysis, association rules.



En este artículo, se propone un nuevo enfoque para la evaluación automática de patrones en minería de textos. Éste combina semantica basada en corpus y Análisis Formal de Conceptos con el fin de manejar propiedades estructurales y semánticas para conceptos descubiertos en tareas tales como generacio¿ón de reglas de asociación. Los experimentos muestran los resultados promisorios de nuestro método para evaluar efectivamente patrones descubiertos cuando se compara con otros métodos de evaluacióon de la literatura.

Palabras clave: Minería de textos, lattices conceptuales, análisis semantico, reglas de asociación





1. Atkinson, J. & Rivas, A. (2008). Discovering novel causal patterns from biomedical natural-language texts using bayesian nets. IEEE Transactions on Information Technology in Biomedicine, 12(6), 714-722.         [ Links ]

2. Bie, T. D. (2011). An information theoretic framework for data mining. Proc. of the 17th ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD'11), San Diego.         [ Links ]

3. Cherfi, H., Napoli, A., & Toussaint, Y. (2004). Knowledge-based selection of association rules for text mining. 16th European Conference on Artificial Intelligence - ECAI'04. (Valencia, Spain), 24, 485-489.         [ Links ]

4. Fu, H., Jennings, B., & Malone, P. (2007). Analysis and representation of biomedical data with concept lattice. IEEE/IES Conference on Digital Ecosystems and Technologies, Cairns Australia.         [ Links ]

5. Landauer, T., McNamara, D., Dennis, S., & Kintsch, W. (2007). Handbook of Latent Semantic Analysis. Lawrence Erlbaum Associates.         [ Links ]

6. Mampaey, M., Tatti, N., & Vreeken, J. (2011). Tell me what i need to know: succinctly summarizing data with itemsets. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '11).         [ Links ]

7. Olson, D. & Delen, D. (2008). Advanced Data Mining Techniques. Springer.         [ Links ]

8. Srivastava, A. & Sahami, M. (2009). Text Mining: Classification, Clustering, and Applications. Chapman and Hall/CRC Publishers.         [ Links ]

9. Tatti, N. & Vreeken, J. (2011). Comparing apples and oranges: measuring differences between data mining results. Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III (ECML PKDD'11).         [ Links ]

10. Yuefeng, L., Abdulmohsen, A., & Ning, Z. (2010). Mining positive and negative patterns for relevance feature discovery. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10. ACM, New York, NY, USA, 753-762.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License