SciELO - Scientific Electronic Library Online

vol.17 issue2Single-Document Keyphrase Extraction for Multi-Document Keyphrase ExtractionExtracting Phrases Describing Problems with Products and Services from Twitter Messages author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.17 n.2 México Apr./Jun. 2013




A Knowledge-Base Oriented Approach for Automatic Keyword Extraction


El enfoque basado en conocimiento para la extracción automática de palabras clave


Ludovic Jean-Louis1, Michel Gagnon1, and Eric Charton3


1 École Polytechnique de Montréal, Montréal, QC, Canada

2 Centre de Recherche Informatique de Montréal, Montréal, QC, Canada

3 École Polytechnique de Montréal, Montréal, QC, Canada and Centre de Recherche Informatique de Montréal, Montréal, QC, Canada


Article received on 08/12/2012
Accepted on 17/01/2013.



Automatic keyword extraction is an important subfield of information extraction process. It is a difficult task, where numerous different techniques and resources have been proposed. In this paper, we propose a generic approach to extract keyword from documents using encyclopedic knowledge. Our two-step approach first relies on a classification step for identifying candidate keywords followed by a learning-to-rank method depending on a user-defined keyword profile to order the candidates. The novelty of our approach relies on i) the usage of the keyword profile ii) generic features derived from Wikipedia categories and not necessarily related to the document content. We evaluate our system on keyword datasets and corpora from standard evaluation campaign and show that our system improves the global process of keyword extraction.

Keywords: Automatic keyword extraction, encyclopedic knowledge.



Extracción de palabras clave es una tarea importante del proceso de extracción de información. Esta tarea es difícil de realizar; con la intención de lograrlo muchas distintas técnicas y recursos han sido propuestos. En este artículo se propone el enfoque genérico para extraer palabras clave de documentos usando el conocimiento enciclopédico. El enfoque incluye dos etapas; primero se realiza clasificación con el fin de identificar candidatos a palabras clave y luego se aplica el método de aprendizaje de ranking dependiente del perfil de palabras clave definido por el usuario para ordenar los candidatos. La novedad del enfoque se basa en 1) el uso del perfil de palabras clave y 2) las características genéricas derivadas de las categorías de Wikipedia y no necesariamente relacionadas con el contenido del documento. El sistema se ha evaluado sobre conjuntos de datos de palabras clave y corpus de la campaña de evaluación estándar y se ha demostrado que el sistema propuesto mejora el procedimiento global de extracción de palabras clave.

Palabras clave: Extracción automática de palabras clave, conocimiento enciclopédico.





1. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.         [ Links ]

2. Charton, E., Camelin, N., Acuna-Agost, R., Gotab, P., Lavalley, R., Kessler, R., & Fernandez, S. (2008). Pré-traitements classiques ou par analyse distributionnelle: application aux méthodes de classification automatique déployées pour deft08. In Actes DEFT08-TALN'08.         [ Links ]

3. Chen, P.-I. & Lin, S.-J. (2010). Automatic keyword prediction using google similarity distance. Expert Systems with Applications, 37.         [ Links ]

4. Eichler, K. & Neumann, G. (2010). Dfki keywe: Ranking keyphrases extracted from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation. ACL.         [ Links ]

5. Grineva, M., Grinev, M., & Lizorkin, D. (2009). Extracting key terms from noisy and multitheme documents. In Proceedings of WWW '09. ACM.         [ Links ]

6. Hammouda, K. M., Matute, D. N., & Kamel, M. S. (2005). Corephrase: keyphrase extraction for document clustering. In Proceedings of MLDM'05. Springer-Verlag.         [ Links ]

7. Hulth, A. (2003). Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of EMNLP '03. ACL.         [ Links ]

8. Kim, S. N., Medelyan, O., Kan, M.-Y., & Baldwin, T. (2010). Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation. ACL, Sweden.         [ Links ]

9. Lopez, P. & Romary, L. (2010). Humb: Automatic key term extraction from scientific articles in grobid. In Proceedings of the 5th International Workshop on Semantic Evaluation. ACL, Sweden.         [ Links ]

10. Matsuo, Y. & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools, 13, 157-169.         [ Links ]

11. Medelyan, O., Frank, E., & Witten, I. H. (2009). Human-competitive tagging using automatic keyphrase extraction. In Proceedings of EMNLP '09. ACL.         [ Links ]

12. Medelyan, O., Witten, I. H., & Milne, D. (2008). Topic indexing with Wikipedia. In Proceedings of the Wikipedia and AI workshop at AAAI-08.         [ Links ]

13. Rao, W., Chen, L., Hui, P., & Tarkoma, S. (2012). Move: A large scale keyword-based content filtering and dissemination system. In IEEE 32nd ICDS.         [ Links ]

14. Sculley, D. (2010). Combined regression and ranking. In Proceedings of KDD '10. ACM.         [ Links ]

15. Stuart, R., Dave, E., Nick, C., & Wendy, C. (2010). Text Mining, chapter Automatic Keyword Extraction from Individual Documents. John Wiley & Sons, Ltd, 1-20.         [ Links ]

16. Turney, P. D. (2000). Learning algorithms for keyphrase extraction. Inf. Retr., 2(4).         [ Links ]

17. Vidal, M., Menezes, G. V., Berlt, K., de Moura, E. S., Okada, K., Ziviani, N., Fernandes, D., & Cristo, M. (2012). Selecting keywords to represent web pages using wikipedia information. In Proceedings of WebMedia 12. ACM, USA.         [ Links ]

18. Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning, C. G. (1999). Kea: practical automatic keyphrase extraction. In Proceedings of DL 99. ACM, USA.         [ Links ]

19. Yang, S., Jin, J., Parag, J., & Liu, S. (2010). Contextual advertising for web article printing. In Proceedings of Doc Eng 10. ACM, USA.         [ Links ]

20. Yih, W.-T., Goodman, J., & Carvalho, V. R. (2006). Finding advertising keywords on web pages. In Proceedings of WWW '06. ACM, USA.         [ Links ]

21. Zhang, C., Wang, H., Liu, Y., Wu, D., Liao, Y., & Wang, B. (2008). Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 1169-1180.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License