SciELO - Scientific Electronic Library Online

 
vol.16 issue4A Motion Capture based Planner for Virtual Characters Navigating in 3D EnvironmentFast Object Recognition for Grasping Tasks using Industrial Robots author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.16 n.4 México Oct./Dec. 2012

 

Artículos

 

Modeling and Control in Task-Space of a Mobile Manipulator with Cancellation of Factory-Installed Proportional–Derivative Control

 

Modelado y control en espacio de tarea de un manipulador móvil con cancelación de control proporcional–derivativo instalado en fábrica

 

Gastón H. Salazar-Silva1, Marco A. Moreno-Armendáriz2, and Jaime Álvarez Gallegos3

 

1 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City, Mexico. Correo: ghsalazar@ipn.mx

2 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico

3 Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional, Mexico City, Mexico.

 

Article received on 30/06/2011.
Accepted on 24/09/2012.

 

Abstract

A mobile manipulator is a robotic arm mounted on a mobile robot; a particular example is a manipulator arm on a mobile robot with differential traction. Mobile manipulators have many advantages over stationary manipulator, such as a larger work space than a stationary manipulator could have in practice. This paper shows a systematic approach to modeling mobile manipulators that transforms the problem to the modeling of a stationary manipulator with non-holonomic kinematic constraints on the joints. It is also presented a task-space control that cancels a factory-installed proportional–derivative (PD) control and it uses an estimate of the derivative of the posture kinematic model. Finally, a numerical experiment is presented using this method.

Keywords: Robot control, mobile manipulators, robots kinematics.

 

Resumen

Un manipulador móvil es un sistema compuesto por un manipulador estacionario montado sobre un robot móvil; un ejemplo particular es un brazo manipulador montado sobre un robot de tracción diferencial. Los manipuladores móviles presentan varias ventajas con respecto a manipuladores estacionarios, por ejemplo un mayor espacio de trabajo. En el presente trabajo se muestra un método para el modelado de manipuladores móvil que transforma el problema a el modelado de un manipulador estacionario con restricciones cinemáticas no holónomas en las articulaciones. También se presenta un control en el espacio de tarea que cancela un control proporcional–diferencial proveniente de fabrica y usa un estimado de la derivada del modelo cinemático de postura. Finalmente, se presentan los resultados obtenidos en un experimento numérico.

Palabras clave: Control de robot, manipuladores móviles, cinemática de robots.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors appreciate the support of Mexican Government (SNI, SIP-IPN, COFAA-IPN, PIFI-IPN and CONACYT).

 

References

1. Abeygunawardhana, P. K. W. & Murakami, T. (2009). Workspace control of two wheel mobile manipulator by resonance ratio control. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapure, 127012–1275.         [ Links ]

2. Andaluz, V., Roberti, F., & Carelli, R. (2010). Adaptive control with redundancy resolution of mobile manipulators. In IECON 2010 -36th Annual Conference on IEEE Industrial Electronics Society. Glendale, AZ, USA, 1436–1441.         [ Links ]

3. Ata, A. A. (2010). Dynamic modelling and numerical simulation of a non-holonomic mobile manipulator. International Journal of Mechanics and Materials in Design, 6(3), 209–216. ISSN 1569-1713.         [ Links ]

4. Bayle, B., Fourquet, J., & Renaud, M. (2003). Kinematic modelling of wheeled mobile manipulators. In 2003 IEEE International Conference on Robotics and Automation. Taipei, Taiwan, 69–74.         [ Links ]

5. Campion, G., Bastin, G., & d'Andrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47–62. ISSN 1042296X.         [ Links ]

6. Corke, P. (1996). A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag., 3(1), 24–32. ISSN 10709932. doi:10.1109/100.486658.         [ Links ]

7. Joshi, J. & Desrochers, A. (1986). Modeling and control of a mobile robot subject to disturbances. In Proceedings. 1986 IEEE International Conference on Robotics and Automation. San Francisco, CA, USA, 1508–1513.         [ Links ]

8. Khatib, O. (1999). Mobile manipulation: The robotic assistant. Robotics and Autonomous Systems, 26(2-3), 175–183. ISSN 09218890.         [ Links ]

9. Korayem, M. H., Azimirad, V., Nikoobin, A., & Boroujeni, Z. (2010). Maximum load-carrying capacity of autonomous mobile manipulator in an environment with obstacle considering tip over stability. The International Journal of Advanced Manufacturing Technology, 46(5-8), 811–829. ISSN 0268-3768.         [ Links ]

10. Li, Y. & Liu, Y. (2004). Control of a mobile modular manipulator moving on a slope. In Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04. Istanbul, Turkey, 135–140.         [ Links ]

11. Luca, A. D. & Oriolo, G. (1995). Modeling and control of nonholonomic mechanical systems. In Kinematics and dynamics of multi-body systems. Springer-Verlag, Wien, New-York. ISBN 9783211827314.         [ Links ]

12. Luca, A. D., Oriolo, G., & Giordano, P. (2006). Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA, 1867–1873.         [ Links ]

13. Mazur, A. (2010). Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators. Robotica, 28(01), 57. ISSN 0263-5747.         [ Links ]

14. Mazur, A. & Szakiel, D. (2009). On path following control of nonholonomic mobile manipulators. International Journal of Applied Mathematics and Computer Science, 19(4), 561–574. ISSN 1641-876X.         [ Links ]

15. Padois, V., Fourquet, J., & Chiron, P. (2007). Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches. Robotica, 25(02), 157—173. ISSN 0263-5747.         [ Links ]

16. Spong, M., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. John Wiley & Sons, Hoboken NJ. ISBN 9780471649908.         [ Links ]

17. Wang, Y., Lang, H., & de Silva, C. W. (2008). Visual servo control and parameter calibration for mobile multi-robot cooperative assembly tasks. In 2008 IEEE International Conference on Automation and Logistics. Qingdao, China, 635–639.         [ Links ]

18. White, G. D., Bhatt, R. M., Tang, C. P., & Krovi, V. N. (2009). Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. IEEE/ASME Transactions on Mechatronics, 14(3), 349–357. ISSN 1083-4435.         [ Links ]

19. Yu, L., Cao, Q., & Xu, X. (2008). An approach of manipulator control for service-robot FISR-1 based on motion imitating. In 2008 IEEE International Conference on Industrial Technology. Chengdu, China, 1–5.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License