SciELO - Scientific Electronic Library Online

 
vol.16 número1Índice de contraste morfológico basado en el análisis de los contornos y el fondo de la imagenCohesión semántica para la anotación y recuperación de imágenes índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Comp. y Sist. vol.16 no.1 Ciudad de México Jan./Mar. 2012

 

Artículos

 

Diseño óptimo de transformadores de Hilbert sin multiplicadores con base en el uso de un subfiltro simple

 

Optimal Design of Multiplierless Hilbert Transformer based on the Use of a Simple Subfilter

 

David E. Troncoso Romero, Miriam G. Cruz Jiménez y Gordana Jovanovic Dolecek

 

Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla, México. Correo: dtroncoso@inaoep.mx, miriam_gcj@inaoep.mx, gordana@inaoep.mx.

 

Artículo recibido el 29/11/2010.
Aceptado el 07/03/2011.

 

Resumen

Los transformadores de Hilbert altamente selectivos pueden ser diseñados eficientemente mediante el método de Transformación en Frecuencia (Frequency Transformation, FT), donde un bloque básico, formado con dos subfiltros idénticos, es implementado repetidamente. El número de bloques utilizados se obtiene de la longitud de un filtro prototipo. Recientemente se ha utilizado la técnica Segmentación–Intercalamiento (Pipelining–Interleaving, PI) para evitar el uso repetitivo del bloque básico, reduciendo el número de coeficientes requeridos. Sin embargo, el diseño del subfiltro y del filtro prototipo está basado en una búsqueda heurística. En este artículo se presenta el método óptimo para diseñar el subfiltro y el filtro prototipo, minimizando el número de coeficientes. Además, se propone una estructura alternativa que permite utilizar únicamente un subfiltro dentro del bloque básico. Como resultado, el número total de coeficientes es disminuido. Se demuestra con un par de ejemplos que el método de diseño es óptimo, simple y eficiente.

Palabras Clave: Filtros digitales, transformador de Hilbert.

 

Abstract

Very sharp Hilbert transformers can be efficiently designed by using the Frequency Transformation (FT) method, where a basic building block, formed with two identical subfilters, is repeatedly implemented. The number of the building blocks used is obtained from the length of a prototype filter. Recently, the Pipelining–Interleaving (PI) technique has been applied to avoid the repetitive use of the basic building block, reducing the number of required coefficients. However, the design of the subfilter and the prototype filter is based on a heuristic search. In this paper, we present an optimal method to design the subfilter and prototype filter minimizing the number of coefficients. Additionally, an alternative structure, which permits to use a unique subfilter inside the basic building block, is presented. As a result, the total number of coefficients is decreased. Two examples show that the proposed design method is optimal, simple, and efficient.

Keywords: Digital filters, Hilbert transformer.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. Antoniou, A. (2006). Digital Signal Processing: Signals, Systems and Filters. New York: McGraw–Hill.         [ Links ]

2. Cruz–Jiménez, M.G., Troncoso–Romero, D.E. & Jovanovic–Dolecek, G. (2010). On design of a multiplierless very Sharp Hilbert transformer by using identical subfilters. 53rd IEEE International Midwest Symposium on Circuits and Systems, Washington, USA, 757–760.         [ Links ]

3. Jiang, Z. & Willson Jr., A.N. (1997). Efficient digital filtering architectures using pipelining/interleaving. IEEE Transactions Circuits and Systems II – Analog and Digital Signal Processing, 44(2), 110–119.         [ Links ]

4. Kodek, D.M. (1980). Design of optimal finite wordlength FIR digital filters using integer programming techniques. IEEE Transactions Acoustic Speech. Signal Processing, 28(3), 304–308.         [ Links ]

5. Lai, Y. & Lin, T.P. (1989). Design of Hilbert transformers by multiple use of the same subfilter. Electronics Letters, 25(19), 1288–1290.         [ Links ]

6. Lehto, R., Saramaki, T., & Vainio, O. (2009). Synthesis of wide–band linear–phase FIR filters with a piecewise–polynomial–sinusoidal impulse response. Circuits, Systems and Signal Processing, 29(1), 25–50.         [ Links ]

7. Lim, Y.C. & Yu, Y.J. (2005). Synthesis of very sharp Hilbert transformer using the frequency–response masking technique. IEEE Transactions Signal Processing, 53(7), 2595–2597.         [ Links ]

8. Lim, Y.C., Yu, Y.J., & Saramaki, T. (2005). Optimum masking levels and coefficients sparseness for Hilbert transformers and half–band filters designed using the frequency–response masking technique. IEEE Transactions Circuits and Systems – I: Reg. Papers, 52(11), 2444–2453.         [ Links ]

9. Saramaki, T. (1987). Design of FIR filters as a tapped cascaded interconnection of identical subfilters. IEEE Transactions Circuits and Systems, 34(9), 1011 –1029.         [ Links ]

10. Vinod, P., Lai, E., Maskell, D.L., & Meher, P.K. (2010). An improved common subexpression elimination method for reducing logic operators in FIR filter implementations without increasing logic depth. Integration, the VLSI Journal, 43(1), 124–135.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons