SciELO - Scientific Electronic Library Online

vol.15 issue1Document kNN Clasification using GPUTowards Raster Spatial Analysis Methods at the Semantic Level author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.15 n.1 México Jul./Sep. 2011




State of the Art of Fingerprint Indexing Algorithms


Estado del arte de algoritmos de indexación de impresiones dactilares


Alfredo Muñoz Briseño, Andrés Gago Alonso, and José Hernández Palancar


Advanced Technologies Application Center, 7a #21812 e/ 218 y 222, Siboney, Playa, Havana, Cuba. E–mail:,,


Article received on March 23, 2011.
Accepted on June 30, 2011.



Due to the large size that fingerprint databases generally have, the reduction of the search space is indispensable. In the resolution of this problem, indexing algorithms have a fundamental role. In the literature, there are several proposals that make use of different features to characterize fingerprints. In addition, a wide variety of recovery methods are reported. This paper concisely describes the indexing algorithms that have reported better results so far and makes a comparison between these, based on experiments in well known databases. Finally, a classification of the indexing algorithms is proposed, based on some general characteristics.

Keywords: Indexing algorithms, fingerprints verification, fingerprints features, triplets features and ridges features.



Debido al gran tamaño que pueden alcanzar las bases de datos de impresiones dactilares, se hace indispensable la reducción de espacio de búsqueda. En la resolución de este problema, los algoritmos de indexación juegan un papel fundamental. En la literatura sobre el tema, existen algunas propuestas que hacen uso de diferentes rasgos para caracterizar las impresiones. Además, existen reportados una gran variedad de métodos de recuperación. El presente artículo describe de manera concisa, los algoritmos de indexación que han reportado los mejores resultados hasta ahora y se hace comparaciones entre estos, basados en experimentos en bases de datos conocidas. Finalmente, se propone una clasificación, basada en algunas características generales.

Palabras clave: Algoritmos de indexación, verificación de impresiones dactilares, rasgos de impresiones dactilares, rasgos de tripletas y rasgos de crestas.





1. Bebis, G., Deaconu, T. & Georgiopoulos, M. (1999). Fingerprint Identification Using Delaunay Triangulation. International Conference on Information Intelligence and Systems, Bethesda, USA, 452–459.         [ Links ]

2. Bhanu, B. & Tan, X. (2001). A Triplet Based Approach for Indexing of Fingerprint Database for Identification. 3rd International Conference Audio and Video Based Biometric Person Authentication (AVBPA 2001), Halmstad, Sweden. 205–210.         [ Links ]

3. Biswas, S., Ratha, N. K., Aggarwal, G. & Connell, J. (2008). Exploring Ridge Curvature for Fingerprint Indexing. 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, Virginia, 1–6.         [ Links ]

4. de Boer, J., Bazen, A. M. & Gerez, S. H. (2001). Indexing Fingerprint Database Based on Multiple Features. ProRISC the 12th Annual Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, 300–306.         [ Links ]

5. Germain, R. S., Califano, A. & Colville, S. (1997). Fingerprint Matching Using Transformation Parameter Clustering. IEEE Computational Science & Engineering, 4(4), 42–49.         [ Links ]

6. Feng, J. & Cai, A. (2006). Fingerprint Indexing Using Ridge Invariants. 18th International Conference on Pattern Recognition (ICPR 2006), Hong Kong, China, 4, 433–436.         [ Links ]

7. Singh, J. K. (2009). A Clustering and Indexing Technique suitable for Biometric Databases. MSc Thesis, Indian Institute Of Technology Kanpur, Kanpur, India.         [ Links ]

8. Li, J., Yau, W. & Wang, H. (2006). Fingerprint Indexing Based on Symmetrical Measurement. 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, China, 1, 1038–1041.         [ Links ]

9. Liang, X., Asano, T. & Bishnu, A. (2006). Distorted Fingerprint Indexing Using Minutiae Detail and Delaunay Triangle. 3rd International Symposium on Voronoi Diagrams in Science and Engineering (ISVD'06), Alberta, Canada, 217–223.         [ Links ]

10. Liang, X., Bishnu, A. & Asano, T. (2007). A Robust Fingerprint Indexing Scheme Using Minutia Neighborhood Structure and Low–Order Delaunay Triangles. IEEE Transactions on Information Forensics and Security, 2 (4), 721–733.         [ Links ]

11. Liu, T., Zhu, G., Zhang, C. & Hao, P. (2005). Fingerprint Indexing Based on Singular Point Correlation. IEEE International Conference on Image Processing (ICIP 2005), Genova, Italy, 3, 293–296.         [ Links ]

12. Mukherjee, R. (2007). Indexing Techniques for Fingerprint and Iris Databases. MSc Thesis, West Virginia University, Virginia, USA.         [ Links ]

13. Shuai, X., Zhang, C. & Hao, P. (2008). Fingerprint Indexing Based on Composite Set of Reduced SIFT Features. 19th International Conference on Pattern Recognition, Florida, USA, 1–4.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License