SciELO - Scientific Electronic Library Online

 
vol.14 issue4An Strategy for the Dynamic Selection of Features Applied to the Stabilization of Image SequencesClass-Conditional Probabilistic Principal Component Analysis: Application to Gender Recognition author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.14 n.4 México Apr./Jun. 2011

 

Artículos

 

Optimización de trayectorias para sistemas sujetos a restricciones no holónomas

 

Trajectory Optimization for Systems Under Nonholonomic Constraints

 

Gustavo Arechavaleta

 

Robótica y Manufactura Avanzada, CINVESTAV – Unidad Saltillo Carretera Saltillo–Monterrey Km. 13.5, C.P. 25900, Ramos Arizpe, Coah. México garechav@cinvestav.edu.mx

 

Artículo recibido en Enero 15, 2010
Aceptado en Junio 11, 2010

 

Resumen

Presentamos una estrategia numérica para calcular trayectorias válidas para sistemas sin deriva con restricciones diferenciales no integrables que minimicen el consumo de energía expresado como la norma L2 del control. Utilizamos herramientas de la teoría del control óptimo y la programación no lineal para formular y resolver el problema de optimización. Primero analizamos las condiciones necesarias que debe satisfacer el control óptimo. Posteriormente convertimos el problema de dimensión infinita a un problema de optimización no lineal de dimensión finita. Esta formulación nos permite generar las trayectorias deseadas utilizando una estrategia simple y eficiente basada en la Programación Cuadrática Secuencial (PCS).

Comparamos la estrategia propuesta con el algoritmo desarrollado por [Fernandes, et al., 1994], en términos de convergencia y tiempo de cálculo, utilizando varios modelos cinemáticos de robots móviles con ruedas y remolques y también un modelo dinámico de robot espacial.

Palabras clave: sistemas no holónomos, control óptimo, optimización numérica, robótica móvil.

 

Abstract

This paper presents a numerical strategy to compute feasible trajectories for driftless systems under nonintegrable differential constraints that minimize the norm of the control. We made use of optimal control tools and nonlinear programming to formulate and solve the optimization problem. First, we analyze the necessary conditions to be satisfied by the optimal control. Then, we transform the infinite–dimensional problem into a finite–dimensional nonlinear optimization problem. This formulation allows us to generate the desired trajectories by using a simple and efficient strategy based on the Sequential Quadratic Programming (SQP).

We compare the proposed strategy with the algorithm developed by [Fernandes, et al., 1994], in terms of convergence and computational time, by using various kinematic models of mobile robots with wheels, chained systems and a dynamic model of space robot.

Keywords: Nonholonomic systems, optimal control, numerical optimization, mobile robotics.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Agradecemos el soporte financiero del CONACyT por medio del proyecto No. 84855 para desarrollar este trabajo.

 

Referencias

1. Arechavaleta, G., Laumond, J.P., Hicheur, H. & Berthoz, A. (2008). An Optimality Principle Governing Human Walking. IEEE Transactions on Robotics, 24(1), 5–14.         [ Links ]

2. Balkcom, D.J., Kavathekar, P.A. & Mason, M.T. (2008). The Minimum–Time Trajectories for an Omni–Directional Vehicle. In S. Akella, N.M. Amato, W.H. Huang & B. Mishra (Eds.), Algorithmic Foundation of Robotics VII (343–358). Berlin: Springer.         [ Links ]

3. Balkcom, D.J. & Mason, M.T. (2002). Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles. International Journal of Robotics Research, 21(3), 199–217.         [ Links ]

4. Bhattacharya, S., Murrieta–Cid, R. & Hutchinson, S. (2007). Optimal Paths for Landmark–based Navigation by Differential Drive Vehicles with Field–of–View Constraints. IEEE Transactions on Robotics, 23(1), 47–59.         [ Links ]

5. Bellaiche, A. & Risler, J. J. (1996). Sub–Riemannian Geometry. Basel; Boston: Birkhäuser.         [ Links ]

6. Betts, J.T. (1998). Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.         [ Links ]

7. Boissonnat, J.D., Cerezo A. & Leblong, J. (1992). Shortest paths of bounded curvature in the plane. IEEE International Conference on Robotics and Automation, Nice, France, 3, 2315–2320.         [ Links ]

8. Boissonnat, J.D., Cerezo, A. & Leblong, J. (1994). A note on shortest paths in the plane subject to a constraint on the derivative of the curvature (Rapport de recherche n 2160). Nice: Institut National De Recherche En Informatique Et Automatique.         [ Links ]

9. Brockett, R.W. (1976). Nonlinear Systems and Differential Geometry. Proceedings of the IEEE, 64(1), 61–72.         [ Links ]

10. Cesari, L. (1983). Optimization, theory and applications: Problems with ordinary differential equations. New York: Springer–Verlag.         [ Links ]

11. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E. & Thrun, S. (2005). Principles of robot motion: Theory, algorithms and implementations. Boston: MIT Press.         [ Links ]

12. Divelbiss, A.W. & Wen, J.T. (1997). A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Transactions on Robotics and Automation, 13(3), 443–451.         [ Links ]

13. Dubins, L.E. (1957). On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3), 497–516.         [ Links ]

14. Fernandes, C., Gurvits, L. & Li Z. (1994). Near–optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Transactions on Automatic Control, 39(3), 450–463.         [ Links ]

15. Hayet, J.B., Esteves, C., Arechavaleta, G. & Yoshida, E. (2009). Motion Planning for a Vigilant Humanoid Robot. 9th IEEE–RAS International Conference on Humanoid Robots, Paris, France, 196–201.         [ Links ]

16. Hayet, J.B., Esteves, C. & Murrieta–Cid, R. (2010). A Motion Planner for Maintaining Landmark Visibility with a Differential Drive Robot. In G.S. Chirikjian, H. Choset, M. Morales & T. Murphey (Eds.), Algorithmic Foundation of Robotics VIII (333–347). Berlin: Springer.         [ Links ]

17. Howard, T. & Kelly, A. (2007). Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots. International Journal of Robotics Research, 26(2), 141–166.         [ Links ]

18. Huifang, W., Yangzhou, C. & Souères P. (2009). A Geometric Algorithm to Compute Time–Optimal Trajectories for a Bidirectional Steered Robot. IEEE Transactions on Robotics, 25(2), 399–413.         [ Links ]

19. Kostov, V.P. & Degtiariova–Kostova, E.V. (1995). The planar motion with bounded derivative of the curvature and its suboptimal paths. Acta Mathematica Universitatis Comeianae, 64(2), 185–226.         [ Links ]

20. Lamiraux, F., Bonnafous, D. & Lefebvre, O. (2004). Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6), 967–977.         [ Links ]

21. Latombe J.C. (1991). Robot Motion Planning. Boston: Kluwer Academic Publishers.         [ Links ]

22. Laumond, J.P., Sekhavat, S. & Lamiraux, F. (1998). Guidelines in Nonholonomic Motion Planning for Mobile Robots. Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, 229, 1–53.         [ Links ]

23. LaValle, S.M. (2006). Planning Algorithms, Cambridge; New York: Cambridge University Press.         [ Links ]

24. Li, Z. & Canny, J. F. (1993). Nonholonomic Motion Planning. Boston: Kluwer Academic.         [ Links ]

25. Mombaur, K., Laumond, J.P. & Yoshida, E. (2008). An optimal control model unifying holonomic and nonholonomic walking. 8th IEEE–RAS International Conference on Humanoid Robots, Daejeon, Korea (South), 646–653.         [ Links ]

26. Murray, R.M, Li, Z. & Sastry S.S. (1994). A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press.         [ Links ]

27. Nocedal, J. & Wright, S. J. (1999). Numerical Optimization. New York: Springer.         [ Links ]

28. Ostrowski, J.P., Desai, J.P. & Kumar, V. (2000). Optimal Gait Selection for Nonholonomic Locomotion Systems. International Journal of Robotics Research, 19(3), 225–237.         [ Links ]

29. Pecsvaradi, T. (1972). Optimal Horizontal Guidance Law for Aircraft in the Terminal Area. IEEE Transactions on Automatic Control, 17(6), 763–772.         [ Links ]

30. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. & Mishchenko E.F. (1964). The Mathematical Theory of Optimal Processes. Oxford, New York: Pergamon Press.         [ Links ]

31. Reeds, J.A. & Shepp, L.A. (1990). Optimal paths for a car that goes both forward and backwards. Pacific Journal of Mathematics, 145(2), 367–393.         [ Links ]

32. Salaris, P., Fontanelli, D., Pallottino, L. & Bicchi, A. (2010). Shortest Paths for a Robot With Nonholonomic and Field–of–View Constraints. IEEE Transactions on Robotics, 26(2), 269–281.         [ Links ]

33. Sastry, S.S. & Montgomery, R. (1992). The structure of optimal controls for a steering problem. IFAC Conference on Nonlinear Control Systems Design. Bordeaux, France, 135–140.         [ Links ]

34. Sontag, E.D. (1995). Control of Systems Without Drift via Generic Loops. IEEE Transactions on Automatic Control, 40(7), 1210–1219.         [ Links ]

35. Souères, P. & Laumond, J.P. (1996). Shortest path synthesis for a car–like robot. IEEE Transactions on Automatic Control, 41(5), 672–688.         [ Links ]

36. Sussmann, H.J. (1990). Nonlinear Controllability and Optimal Control, New York: M. Dekker.         [ Links ]

37. Sussmann, H.J. & Tang, W. (1991). Shortest paths for Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control (Report SYCON–91–10). New Brunswick Rutgers University.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License