SciELO - Scientific Electronic Library Online

vol.14 issue3A Statistical comparative analysis of Simulated Annealing and Variable Neighborhood Search for the Geographic Clustering ProblemSemantic Representation of Raster Spatial Data author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.14 n.3 México Jan./Mar. 2011




Periodicity and Texel Size Estimation of Visual Texture Using Entropy Cues


Estimación de la periodicidad y el tamaño del texel en textura visual utilizando indicadores de entropía


Rocío Lizarraga Morales1, Raúl E. Sánchez Yáñez2 and Víctor Ayala Ramírez3


1 División de Ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Salamanca, México. Email:

2 División de Ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Salamanca, México. Email:

3 División de Ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Salamanca, México. Email:


Article received on January 15, 2010
Accepted on May 13, 2010



Texture periodicity and texture element (texel) size are important characteristics for texture recognition and discrimination. In this paper, an approach to determine both, texture periodicity and texel size, is proposed. Our method is based on the entropy, a texture measure computed from the Sum and Difference Histograms. The entropy value is sensitive to the parameters in such histograms and takes its lowest value when the parameters match with texel size or its integer multiples, in any specific direction. We show the performance of our method by texture synthesis, tiling a sample of the detected size and measuring the similarity between the original image and the synthesized one, showing good results with regular textures and texels with different shapes, being useful for practical applications as well because of its simple implementation.

Keywords: Image Processing, Texture, Size and Shape, Texture Periodicity, Entropy.



La periodicidad de textura y el tamaño del elemento de textura (texel), son características importantes para el reconocimiento de texturas y su discriminación. En este artículo se propone un enfoque para determinar tanto la periodicidad de textura como el tamaño del texel. Nuestro método está basado en una medida de entropía de textura, calculada a partir de los histogramas de sumas y diferencias. El valor de la medida de entropía es sensible a los parámetros de tales histogramas y alcanza un valor bajo cuando dichos parámetros coinciden con el tamaño del texel o sus múltiplos enteros, en una determinada dirección. El rendimiento de nuestro enfoque es mostrado mediante síntesis de textura, al colocar repetidamente una muestra del tamaño del texel detectado sobre una superficie del mismo tamaño de la textura original y midiendo la semejanza entre la imagen sintetizada y la imagen original. Nuestro método muestra buenos resultados con texturas periódicas y semiperiódicas, pudiendo utilizarse en aplicaciones prácticas por su sencilla implementación.

Palabras clave: Procesamiento de Imágenes, Textura, Forma y Tamaño, Periodicidad de Textura, Entropía.





1. Ahuja, N. & Todorovic S. (2007). Extracting texels in 2.1D natural textures. 11th IEEE International Conference on Computer Vision (ICCV '07), Rio de Janeiro, Brazil, 1–8.         [ Links ]

2. Brodatz, P. (1966). Textures: A Photographic Album for Artists and Designers. New York: Dover Publications.         [ Links ]

3. Djado, K., Egli R. & Deschênes F. (2005). Extraction of a representative tile from a near–periodic texture. 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia (GRAPHITE '05), Dunedin, New Zealand, 331–337.         [ Links ]

4. Dong, W., Zhou N. & Paul J.–C. (2008). Tile–based interactive texture design. 3rd International Conference on Technologies for E–Learning and Digital Entertainment (Edutainment '08). Lecture Notes in computer Science, 5093, 675–686.         [ Links ]

5. Grigorescu, S. E. & Petkov J. M. F. (2003). Texture analysis using Renyi's generalized entropies. International Conference on Image Processing (ICIP' 03), Barcelona, Spain, 241–244.         [ Links ]

6. Haralick, R. M., Shanmugan K. & Dinstein I. (1973).Textural features for image classification, IEEE Transactions on Systems, Man and Cybernetics, 3(6), 610–621.         [ Links ]

7. Jan, S.R. & Hsueh Y.–C. (1998). Window–size determination for granulometrical structural texture classification. Pattern Recognition Letters, 19(5–6), 439–446.         [ Links ]

8. Kishor, G. R., Mital D. P. & Goh W. L. (1995). Invariant texture analysis based on attributes of texture elements. IEEE International Symposium on Industrial Electronics, Athens, Greece, 1, 400–404.         [ Links ]

9. Klette, R. Basic Multimedia Imaging. (s.f). Retrieved from        [ Links ]

10. Lee, K.–L. & Chen L.–H. (2002). A new method for extracting primitives of regular textures based on wavelet transform. International Journal of Pattern Recognition and Artificial Intelligence, 16(1), 1–25.         [ Links ]

11. Leu, J.–G. (2001). On indexing the periodicity of image textures. Image and Vision Computing, 19(3), 987–1000.         [ Links ]

12. Lin, H.–C., Wang L.–L. & Yang S.–N. (1997). Extracting periodicity of a regular texture based on autocorrelation functions. Pattern Recognition Letters, 18(5), 433–443.         [ Links ]

13. Lin, H.–C., Wang L.–L. & Yang S.–N. (1999). Regular–texture image retrieval based on texture–primitive extraction. Image and Vision Computing, 17(1), 51–63.         [ Links ]

14. Lizarraga–Morales, R. A., Sanchez–Yanez R. E. & Ayala–Ramirez V. (2009). Optimal spatial predicate determination of a local binary pattern operator. 9th IASTED International Conference on Visualization, Imaging and Image Processing (VIIP '09), Cambridge, UK, 41–46.         [ Links ]

15. Ngan, H.Y.T. & Pang G.K.H. (2009). Regularity analysis for patterned texture inspection. IEEE Transactions on Automation Science and Engineering, 6(1), 131–144.         [ Links ]

16. Oh, G., Lee S. & Shin S. Y. (1999). Fast determination of textural periodicity using distance matching function. Pattern Recognition Letters, 20(2), 191–197.         [ Links ]

17. Parkkinen, J., Selkainaho K, & Oja E. (1990). Detecting texture periodicity from the co–occurrence matrix. Pattern Recognition Letters, 11(1), 43–50.         [ Links ]

18. Selkainaho, K., Parkkinen J. & Oja E. (1988). Comparison of χ2 and κ statistics in finding signal and picture periodicity. 9th International Conference on Pattern Recognition, Rome, Italy, 2, 1221–1224.         [ Links ]

19. Starovoitov, V. V., Jeong S.–Y. & Park R.–H. (1998). Texture periodicity detection: features, properties and comparisons. IEEE Transactions on Systems, Man and Cybernetics, Part A, 28(6), 839–849.         [ Links ]

20. Tamura, H., Mori S. & Yamawaki T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6), 460–473.         [ Links ]

21. Todorovic, S. & Ahuja N. (2009). Texel–based texture segmentation. IEEE 12th International Conference on Computer Vision (ICCV '09). Kyoto, Japan, 841–848.         [ Links ]

22. Unser, M. (1986). Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 118–125.         [ Links ]

23. Zhu, S.C., Guo C., Wang Y. & Xu Z. (2005). What are textons?. International Journal of Computer Vision, 62(1–2), 121–143.         [ Links ]

24. Zucker, S.W. & Terzopoulus D. (1980). Finding structure in co–occurrence matrices for texture analysis. Computer Graphics and Image Processing, 12(3), 286–308.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License