SciELO - Scientific Electronic Library Online

 
vol.13 issue4A Hybrid Approach in the Development of Behavior Based RoboticsA Robust Evolvable System for the Synthesis of Analog Circuits author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.13 n.4 México Apr./Jun. 2010

 

Artículos

 

Construction of an Optimal Solution for a Real–World Routing–Scheduling–Loading Problem

 

Construcción de una Solución Óptima para un Problema de Asignación de Rutas, Horarios y Cargas del Mundo Real

 

Juan Javier González Barbosa, José Francisco Delgado Orta, Héctor Joaquín Fraire Huacuja, José Antonio Martínez Flores and María Lucila Morales Rodríguez

 

Instituto Tecnológico de Ciudad Madero, México, jjgonzalezbarbosa@gmail.com, francisco.delgado.orta@gmail.com, hfraire@prodigy.net.mx, jose.mtz@gmail.com, lmorales@gmail.com

 

Article received on July 20, 2009.
Accepted on November 14, 2009.

 

Abstract

This work presents an exact method for the Routing–Loading–Scheduling Problem (RoSLoP). The objective of RoSLoP consists of optimizing the delivery process of bottled products in a company study case. RoSLoP, formulated through the well–known Vehicle Routing Problem (VRP), has been solved as a rich VRP variant through approximate methods. The exact method uses a linear transformation function, which allows the reduction of the complexity of the problem to an integer programming problem. The optimal solution to this method establishes metrics of performance for approximate methods, which reach an efficiency of 100% in distance traveled and 75% in vehicles used, objectives of VRP. The transformation function reduces the computation time from 55 to four seconds. These results demonstrate the advantages of the modeling mathematical to reduce the dimensionality of problems NP–hard, which permits to obtain an optimal solution of RoSLoP. This modeling can be applied to get optimal solutions for real–world problems.

Keywords: Optimization, Routing–Scheduling–Loading Problem (RoSLoP), Vehicle Routing Problem (VRP), rich VRP.

 

Resumen

Éste trabajo presenta un método exacto para el problema de Asignación de Rutas, Horarios y Cargas (RoSLoP). El objetivo de RoSLoP consiste en optimizar el proceso de entrega de productos embotellados en una compañía caso de estudio. El problema RoSLoP, formulado a través del conocido Problema de Enrutado de Vehículos (VRP), ha sido resuelto como una variable VRP enriquecida a través de métodos aproximados. El método exacto usa una función de transformación lineal, la cual permite la reducción de la complejidad del problema a un problema de programación entera. La solución óptima para éste método establece las métricas del desempeño para los métodos aproximados, los cuales alcanzan una eficiencia del 100% en distancia recorrida y 75% en vehículos utilizados, objetivos del VRP. La función de transformación reduce el tiempo del cálculo de 55 a cuatro segundos. Éstos resultados demuestran las ventajas del modelado matemático para reducir la dimensionalidad de problemas NP–Duros, lo cual permite la obtención de una solución óptima del problema RoSLoP. Éste modelado puede ser aplicado para obtener las soluciones óptimas para problemas del mundo real.

Palabras Clave: Optimización, Problema de Asignación de Rutas, Horarios y Cargas (RoSLoP), Problema de Enrutado de Vehículos (VRP), Problema VRP Enriquecido.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Archetti, C., Mansini, R. & Speranza, M.G. (2001). The Vehicle Routing Problem with capacity 2 and 3, General Distances and Multiple Customer Visits. Operational Research Peripatetic Post–graduate Programme. 1(1),102–112.        [ Links ]

2. Bianchi, L. (2000). Notes on Dynamic Vehicle Routing. (IDSIA–05–01). Switzerland: Istituto Dalle Molle di Studi sull'Intelligenza Artificíale.        [ Links ]

3. Cano, I., Litvinchev, I., Palacios R., & Naranjo, G. (2005). Modeling Vehicle Routing in a Star–Case Transportation Network. Memoria del XIV Congreso Internacional de Computación CIC, IPN. México DF. 373–377.         [ Links ]

4. Cordeau, J.F., Desaulniers, G., Desrosiers, J., Solomon, M.M. & Soumis, F. (1999). The VRP with time windows. (GERAD G–99–13). Montreal: École des Hautes Études Commerciales de Montréal.        [ Links ]

5. Cruz, L., González, J.J., Romero, D., Fraire, H.J., Rangel, N., Herrera, J.A., Arrañaga, B.A. & Delgado, J.F. (2007a). A Distributed Metaheuristic for Solving a Real–World Scheduling–Routing–Loading Problem. Symposium on Parallel and Distributed Processing and Applications ISPA 2007. Lecture Notes in Computer Science, 4142, 68–77.        [ Links ]

6. Cruz, L., Nieto–Yáñez, D.M., Rangel–Valdez, N., Herrera, J.A., González, J.J., Castilla, G., & Delgado–Orta, J.F. (2007). DiPro: An Algorithm for the Packing in Product Transportation Problems with Multiple Loading and Routing Variants. Mexican International Conference on Artificial Inteligence MICAI 2007. Lecture Notes in Computer Science, 4821, 1018–1088.        [ Links ]

7. Cruz, L., Delgado–Orta, J.F., González, J.J., Torres, J., Fraire, H.J., & Arrañaga, B.A. (2008). An Ant Colony System to solve Routing Problems applied to the delivery of bottled products. International Symposium ISMIS 2008. Lecture Notes in Computer Science, 4994, 329–338.        [ Links ]

8. The VRP Web. (2005). Retrieved from http://neo.lcc.uma.es/radi–aeb/WebVRP.        [ Links ]

9. Fleischmann, B. (1990). The Vehicle routing problem with multiple use of vehicles. Hamburg: Universitt Hamburg.        [ Links ]

10. Goel, A. & Gruhn, V. (2005). Solving a Dynamic Real–Life Vehicle Routing Problem. Operations Research Proceedings, 1(1), 367–372.        [ Links ]

11. Flatberg, T., Hasle, G., Kloster, O., Nilssen, E.J., & Riise, A. (2001). Dynamic and Stochastic Vehicle Routing in Practice. Operations Research/Computer Science Interfaces Series, 38(1), 45–68.        [ Links ]

12. Herrera, J. (2006). Development of a methodology based on heuristics for the integral solution of routing, scheduling and loading problems on distribution and delivery processes of products. MSc Thesis. Instituto Tecnológico de Ciudad Madero, Tamaulipas, México.        [ Links ]

13. Jacobs, B. & Goetshalckx, M. (1993). The Vehicle Routing Problem with Backhauls: Properties and Solution Algorithms. (MHRC–TR–88–13). Georgia: Georgia Institute of Technology .        [ Links ]

14. Mingozzi, A. (2005). The Multi–depot Periodic Vehicle Routing Problem. Symposium Abtraction, Reformulation and Approximation SARA 2005. Lecture Notes in Computer Science, 3601, 341–350.        [ Links ]

15. Pisinger, D. & Ropke, S. (2005). A General Heuristic for Vehicle Routing Problems. Computers & Operations Research, 34(8), 2403–2435.        [ Links ]

16. Rangel, N. (2005). Analysis of the routing, scheduling and loading problems in a Products Distributor. MSc Thesis. Instituto Tecnológico de Ciudad Madero, Madero, Tamaulipas, México.        [ Links ]

11. Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. Principles and Practice of Constraint Programming – CP98. Lecture Notes in Computer Science. 1520, 411–431.        [ Links ]

18. Taillard, E. (1996). A Heuristic Column Generation Method For the Heterogeneous Fleet VRP. (CRI–96–03). Switzerland: Istituto Dalle Moli di Studi sull Inteligenza Artificiale.        [ Links ]

19. Thangiah, S. (2003). A Site Dependent Vehicle Routing Problem with Complex Road Constraints. (SRT84–2003) Slippery Rock University, PA.        [ Links ]

20. Toth, P. & Vigo, D. (2001). The vehicle routing problem. SIAM, Monographs on Discrete Mathematics and Applications. Philadelphia: Society for Industrial and Applied Mathematics.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License