SciELO - Scientific Electronic Library Online

 
vol.13 número2Control Optimo en Línea de Robot para Seguimiento sin Cinemática InversaMemoria Asociativa en un Espacio Métrico Continuo: Fundamentos Teóricos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Comp. y Sist. vol.13 no.2 Ciudad de México Out./Dez. 2009

 

Artículos

 

Discrete–Time Modeling and Path–Tracking for a Wheeled Mobile Robot1

 

Modelado en Tiempo Discreto y Seguimiento de Trayectorias para un Robot Móvil Propulsado por Ruedas

 

Martin Velasco Villa* 2, Eduardo Aranda Bricaire** and Rodolfo Orosco Guerrero***

 

* ESIME–Culhuacan, Instituto Politécnico Nacional Av. Santa Ana 1000, 04430 México D.F., México. velasco@cinvestav.mx

** CINVESTAV–IPN, Departamento de Ingeniería Eléctrica, Sección de Mecatrónica Apdo. 14–740, 07000, México DF, México. earanda@cinvestav.mx

*** Instituto Tecnológico de Celaya, Departamento de Ingeniería Electrónica, Av. Tecnológico y A. García S/N, Celaya Guanajuato, México. rodolfoo@itc.mx

 

Article received on March 10, 2008
Accepted on September 04, 2008

 

Abstract

The exact discrete–time model of a two wheel differentially driven mobile robot is obtained by direct integration of its continuous–time kinematic model. The discrete–time model obtained is used to design two discrete–time linearizing control laws with different singular manifolds. These control laws are used to propose a commutation control scheme that solves the path–tracking problem and guarantees internal stability of the closed loop system. The performance of the control scheme is evaluated by the real time implementation of the proposed control strategy over a laboratory prototype.

Keywords: Discrete–time systems, mobile robots, feedback linearization, real time systems.

 

Resumen

El modelo exacto en tiempo discreto de un robot móvil propulsado por diferencias de velocidades es obtenido por integración directa de su modelo cinemático en tiempo continuo. El modelo en tiempo discreto es utilizado para diseñar dos leyes de control por linealización por retroalimentación con diferentes variedades singulares. Estas leyes de control son usadas para proponer un esquema de control por conmutación que resuelve el problema de seguimiento de trayectoria y garantiza la estabilidad interna del sistema en lazo cerrado. El desempeño del esquema de control es evaluado mediante la implementación en tiempo real de la estrategia de control propuesta sobre un prototipo de laboratorio.

Palabras clave: Sistemas en tiempo discreto, robots móviles, linealización por retroalimentación, sistemas en tiempo real.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgement

First author work was partially supported by CONACyT–México, Under Grant 61713.

 

References

1. Aranda–Bricaire E., Kotta U. and Moog C. H. "Linearization of discrete–time systems", SIAM Journal on Control and Optimization, 34(6): 1999–2023, 1996.        [ Links ]

2. Aranda–Bricaire E., Salgado–Jiménez T. and Velasco–Villa M. "Control no lineal discontinuo de un robot móvil", Computación y Sistemas, Special Number:42–49, 2002.        [ Links ]

3. Campion G., Bastin G. and D'Andréa–Novel B. "Structural properties and clasification of kinematics and dynamics models of wheeled mobile robots", IEEE Transactions on Robotics and Automation, 12(1):47–61, 1996.        [ Links ]

4. Canudas C., Siciliano B., Bastin G., Brogliato B., Campion G., D'Andrea–Novel B., De Luca A., Khalil W., Lozano R., Ortega R., Samson C. and Tomei P. Theory of Robot Control. Springer–Verlag, London, 1996.        [ Links ]

5. Corradini M. L., Leo T. and Orlando G. "Robust stabilization of a mobile robot violating the nonholonomic contraint via quasi–sliding modes", Proccedings of the American Control Conference, 3935–3939, USA, June 1999.        [ Links ]

6. Corradini M. L., Leo T. and Orlando G. "Experimental testing of a discrete–time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects", Journal of Robotics Systems, 19(4): 177–188, 2002.        [ Links ]

7. D'Andrea–Novel B., Bastin G. and Campion G. "Dynamic feedback linearization of nonholonomic wheeled mobile robots", Proceedings of the IEEE International Conference on Robotic and Automation, 2527–2532, Nice, France, 1992.        [ Links ]

8. Isidori A. Nonlinear Control Systems, Springer–Verlag, New York, 1995.        [ Links ]

9. Kotta U. Inversion Method in the Discrete–Time Nonlinear Control Systems, Springer–Verlag, London, 1995.        [ Links ]

10. Nijmeijer H. and Van der Schaft A. Nonlinear Dynamical Control Systems, Springer–Verlag, New York, 1990.        [ Links ]

11. Oelen W., Berghuis H., Nijmeijer H. and Canudas C. "Hybrid stabilization control of a real mobile robot", IEEE Robotics and Automation Magazine, 2(2):16–23, 1995.        [ Links ]

12. Oriolo G., De Luca A. and Venditteli M. "WMR control via dynamic feedback linearization: Design, implementation, and experimental validation", IEEE Transaction on Control Systems Technology, 10(6):835–852, 2002.        [ Links ]

13. Orosco–Guerrero R., Aranda–Bricaire E. and Velasco–Villa M. "Global path–tracking for a multi–steered general n–trailer". Proceedings 15th IFAC World Congress, Barcelona, Spain, 2002.        [ Links ]

14. Orosco–Guerrero R., Aranda–Bricaire E. and Velasco–Villa M. "Modeling and dynamic feedback linearization of a multi–steered general n trailer system", Proceedings 15th IFAC World Congress, Barcelona, Spain, 2002.        [ Links ]

15. Wargui M., Tadjine M. and Rachid A. "Stability of real time control of an autonomous mobile robot", IEEE 5th. International Workshop on Robot and Human Communication, 311–316, Tsukuba, Japan, November 1996.        [ Links ]

16. Wargui M., Tayebi A., Tadjine M. and Rachid A. "On the stability of an autonomous mobile robot subject to network induced delay", IEEE International Conference on Control Applications, 28–30, Hartford, CT, October 1997.        [ Links ]

 

Notas

1 First author work was partially supported by CONACyT-México, Under Grant 61713.

2 M. Velasco-Villa is on sabbatical leave from CINVESTAV-IPN, México.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons