SciELO - Scientific Electronic Library Online

vol.13 issue1G'3-Stable Semantics and InconsistencyTeaching safety precautions in a laboratory DVE: the effects of information location and interactivity author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.13 n.1 Ciudad de México Jul./Sep. 2009




Using Simulated Annealing with a Neighborhood Heuristic for Roll Cutting Optimization


Aplicando Recocido Simulado con Heurística de Vecindad a la Optimización de Cortes en Rollos


Horacio Martínez Alfaro and Manuel Valenzuela Rendón


Centro de Computación Inteligente y Robótica Tecnológico de Monterrey Monterrey, N.L. 64849 México Ph. +52 81.8328.4381 F. +52 81.8328.4189 ;


Article received on July 15, 2008
Accepted on April 03, 2009



This article presents the use of the Simulated Annealing algorithm with a heuristic to solve the waste minimization problem in roll cutting programming, in this case, paper. Client orders, which vary in weight, width, and external and internal diameter, are fully satisfied. Several tests were performed with real data from a paper company in which an average of 30% waste reduction and 100% reduction in production to inventory are obtained compare to the previous procedure.

Keywords: Simulated Annealing, optimization, heuristics, cutting, paper rolls.



Este artículo presenta el uso del algoritmo de Recocido Simulado con una heurística para resolver el problema de minimización de desperdicio en la programación de cortes en rollos, en este caso de papel. Las órdenes de los clients, que varían en peso, ancho, y diámetro interno y externo, se satisfacen al 100%. Se realizan varias pruebas con datos reales de una compañía en donde en promedio se obtiene un ahorro del 30% de desperdicio y 100% de producción a inventario comparado con el procedimiento anterior.

Palabras clave: Recocido simulado, optimización, heurísticas, corte, rollos de papel.





1. Burkard, R., & Rendl, F. (1984). A thermodynamically motivated simulation procedure for combinatorial optimization problems. European J. of Oper. Res.(17), 169–174.        [ Links ]

2. Elperin, T. (1988). Monte carlo structural optimization in discrete variables with annealing algorithm. Int. J. for Numerical Methods in Eng.(26), 815–821.        [ Links ]

3. Gelfand, S. B., & Mitter, S. K. (1985, December). Analysis of simulated annealing for optimization. In Proc. 24th Conf. on Decision and Control (pp. 779–786). Ft. Lauderdale.        [ Links ]

4. Gielen, G. G. E., Walscharts, H. C. C., & Sansen, W. M. C. (1990, June). Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE Journal of Solid–State Circuits (25), 707–713.        [ Links ]

5. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.        [ Links ]

6. Kirkpatrick, S., & Toulouse, G. (1985). Configuration space analysis of travelling salesman problems. J. Physique (46), 1277–1292.        [ Links ]

7. Laarhoven, P. J. M. van, & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht, Holland: D. Reidel Pub. Co.        [ Links ]

8. Malhotra, A., Oliver, J. H., & Tu, W. (1991). Synthesis of spatially and intrinsically constrained curves using simulated annealing. In Asme Design Engineering Technical Conferences: Advances in Design Automation (pp. 145–155).        [ Links ]

9. Martínez–Alfaro, H., & Flores–Terán, G. (1998). Solving the classroom assignment problem with simulated annealing. In Ieee Int. Conf. on Systems, Man, & Cybernetics. San Diego, CA.        [ Links ]

10. Martínez –Alfaro, H., & Flugrad, D. R. (1994, September). Collission–free path planning of robots and/or AGVs using B–splines and simulated annealing. In Asme 23rd Biennial Mechanisms Conference. Minneapolis.        [ Links ]

11. Martínez –Alfaro, H., & Ulloa–Pérez, A. (1996). Computing near optimal paths in C–space using simulated annealing. In Asme Design Engineering Technical Conference/24th Biennial Mechanisms Conference. Irvine, CA.        [ Links ]

12. Martínez –Alfaro, H., Valdez, H., & Ortega, J. (1998a). Linkage synthesis of a four–bar mechanism for n precision points using simulated annealing. In Asme Design Engineering Technical Conferences/25th Biennial Mecanisms and Robotics Conference. Atlanta.        [ Links ]

13. Martínez –Alfaro, H., Valdez, H., & Ortega, J. (1998b). Using simulated annealing to minimize operational costs in the steel making industry. In Ieee Int. Conf. on Systems, Man, & Cybernetics. San Diego.        [ Links ]

14. Martínez –Alfaro, H., & Valenzuela–Rendón, M. (2004). Using simulated annealing for paper cutting optimization. Lecture Notes In Artificial Intelligence Series: Lecture Notes In Computer Science, 11–20.        [ Links ]

15. Metropolis, N., Rosenbluth, A., Rosenbluth, M., & Teller, A. (1953). Equations of state calculations by fast computing machines. J. of Chemical Physics (21), 1087–1091.        [ Links ]

16. Rutenbar, R. (1989, January). Simulated annealing algorithms: An overview. IEEE Circuits and Devices, 19–26.        [ Links ]

17. Vanderbilt, D., & Louie, S. (1984). A monte carlo simulated annealing approach to optmization over continuous variables. J. Comput. Phys.(36), 259–271.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License