SciELO - Scientific Electronic Library Online

 
vol.12 issue4Fast Adaptive Trajectory Tracking Control for a Completely Uncertain DC Motor via Output Feedback author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.12 n.4 México Apr./Jun. 2009

 

Artículos

 

Task Based Mechatronic System Design using Differential Evolution Strategies

 

Diseño de Sistemas Mecatrónicos Basado en Tareas usando Estrategias de Evolución Diferencial

 

Carlos Alberto Cruz Villar*, Jaime Álvarez Gallegos** and Miguel Gabriel Villarreal Cervantes***

 

Cinvestav–IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 México, D.F. E–mails: cacruz@cinvestav.mx*; jalvarez@cinvestav.mx**; gvillarr@cinvestav.mx***.

 

Article received on October 18, 2007
Accepted on August 12, 2008

 

Abstract

A dynamic design approach for a mechatronic system called task based mechatronic system design approach (TBMSDA) is stated as a nonlinear dynamic optimization problem (NLDOP) and it is solved by using a differential evolution technique. The design of a parallel robot is carried out by this approach which integrates in a simultaneous way both the structure design parameters of a parallel robot and the PID controller gains in order to improve the position errors and the robot dexterity for executing a specific task. The TBMSDA considers the dynamic system as an equality constraint into the optimization problem. Through the TBMSDA, an optimal combination of the structure and PID controller gains for a planar five–bar parallel robot is obtained. Simulation results show the effectiveness of this design approach.

Keywords: Mechatronic design, Task based design, Evolutionary algorithms, System optimization, Parallel robot.

 

Resumen

Se establece un enfoque de diseño dinámico para un sistema mecatrónico denominado enfoque de diseño de sistemas mecatrónicos basado en tareas. Se plantea como un problema de optimización dinámica no lineal y su solución se basa en el uso de técnicas de evolución diferencial. Con este enfoque, se realiza el diseño de un robot paralelo al integrar en forma simultánea los parámetros del diseño de la estructura mecánica del robot paralelo y los parámetros del diseño de las ganancias del controlador PID con el propósito de optimizar el desempeño en los errores de posición y en la destreza del robot al ejecutar una tarea específica. En el problema de optimización se considera la dinámica del sistema como una restricción de igualdad. Con este enfoque de diseño, se obtiene una combinación óptima de la estructura y de las ganancias del controlador PID para un robot paralelo de cinco eslabones planar y para su controlador. Resultados de simulación muestran la efectividad de este enfoque de diseño mecatrónico.

Palabras clave: Diseño mecatrónico, Diseño basado en la tarea, Algoritmos evolutivos, Optimización de sistemas, robot paralelo.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work is supported by the Phd. CONACYT scholarship 182799.

 

Appendix 1: Pseudo code of the differential evolution algorithm [Mezura, et. al., 2006]

 

References

1. Alvarez, J., C. A. Cruz and E. Portilla, "Parametric optimal design of a pinion–rack based continuously variable transmission", IEEE/ASME International Conference on Advance Intelligent Mechatronics, 2005, pp.24–28.        [ Links ]

2. Amerongen, J., "Mechatronic design", Mechatronics, 13(10): 1045–1066 (2003).        [ Links ]

3. Betts, J. T., Practical methods for optimal control using nonlinear programming. SIAM, Philadelphia; 2001.        [ Links ]

4. Ghorbel, F. H., O. Chételat, R. Gunawardana and R. Longchamp, "Modeling and set point control of closed–chain mechanisms: theory and experiment", IEEE Transactions on Control Systems Technology, 8(5): 801–815 (2000).        [ Links ]

5. Goldberg, DE., Genetic algorithms in search, optimization and machine learning, Addison–Wesley: Reading, MA, U.S.A., 1989.        [ Links ]

6. Hunt, K. H., "Structural kinematics of in–parallel–actuated robot arms". ASME Journal of Mechanisms, Transmissions and Automation in Design, 105(4): 705–712 (1983).        [ Links ]

7. Kim, J. Y., "Task based kinematic design of a two DOF manipulator with a parallelogram five–bar link mechanism", Mechatronics, 16(6): 323–329 (2006).        [ Links ]

8. Liu, X–J., J. Wang and G. Pritschow, "Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms", Mechanism and Machine Theory, 41(2): 145–169 (2006).        [ Links ]

9. Ma, Ou and J. Angeles, "The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning", IEEE International Conference on Robotics and Automation, 1990, 481–486.        [ Links ]

10. Mezura, E. and C. A. Coello, "A simple multimembered evolution strategy to solve constrained optimization problems", IEEE Transactions on Evolutionary Computation , 9(1), 2005, 1–17.        [ Links ]

11. Mezura, E., J. Velázquez and C. A. Coello, "A comparative study of differential evolution variants for global optimization", Proceedings of the 8th annual conference on Genetic and evolutionary computation, 2006, 485–492.        [ Links ]

12. Osyczka, A., Multicriterion optimization in engineering, John Wiley & Sons, New York, 1984.        [ Links ]

13. O'Dwyer, A., Handbook of PI and PID controller tunning rules, Imperial College Press, London, 2006.        [ Links ]

14. Portilla, E. A., E. Mezura, J. Alvarez, C. A. Coello and C. A. Cruz, "Integration of structure and control using an evolutionary approach: An application to the optimal concurrent design of a CVT", International Journal for Numerical Methods in Engineering, 71(8): 883–901 (2007).        [ Links ]

15. Price, K. V., R. M. Storn and J. A. Lampinen, Differential evolution approach to global optimization, Springer – Verlag Berlin Heidelberg, Germany, 2005.        [ Links ]

16. Ravichandran, Th., D. Wang and G. Heppler, "Simultaneous plant–controller design optimization of a two–link planar manipulator". Mechatronics, 16(3–4): 233–242 (2006).        [ Links ]

17. Spong, M. W. and M. Vidyasagar, Robot dynamics and control, John Wiley and Sons, New York; 1989.        [ Links ]

18. Stan, S.–D., V. Maties and R. Balan, "Optimization of 2 dof micro parallel robots using genetic algorithms", Proceedings of International Conference on Mechatronics, 2007, pp. 1–6.        [ Links ]

19. Sudhendu, R. and H. Asada, "Integrated structure/control design of high speed flexible robots based on time optimal control". Journal of dynamic systems, measurement, and control, 117(4), 503–512 (1995).        [ Links ]

20. Ting, K. L., "Five–bar Grashof criteria". Journal of Mechanism, Transmissions and Automation in Design, 108, 533–537 (1986).        [ Links ]

21. Yoshikawa, T., "Dynamic manipulability of robotic mechanism", J. Robotic Systems, 2(1), 113–124 (1985).        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License