SciELO - Scientific Electronic Library Online

vol.10 issue2An Algorithm for Computing Design Parameters of IFIR Filters with Low ComplexityA Comparative Evaluation of four Algorithms for Numeric Solution of the Deconvolution on Unidimensional Systems author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.10 n.2 Ciudad de México Oct./Dec. 2006


Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model


Verificación de las propiedades lineales síncronas y asíncronas del Modelo de la Red de Petri Coloreado Intervalo Tiempo


Hanifa Boucheneb


Department of Computer Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre–ville, Montréal, Québec


Article received on July 30, 2004
Accepted on December 11, 2006



This paper deals with verification of timed and untimed linear properties of the Interval Timed Colored Petri Net model. This model can simulate other timed colored Petri nets and allows describing large and complex real–time systems. We propose here to contract its generally infinite state space into a graph that captures all linear properties of the model. The resulting graph is finite iff, the model is bounded (the set of its reachable markings is finite). In this case, linear properties of the model can be verified on the graph using, for example, the classical linear model checking techniques.

Keywords: Formal methods, model checking, timed models, timed colored Petri net, state space contraction, linear properties.



Este artículo se ocupa de la verificación de las propiedades lineales temporizadas y no temporizadas del modelo de redes de Petri coloreadas con intervalos temporizados. Este modelo puede simular otras redes de Petri coloreadas temporizadas y permite describir grandes y complejos sistemas en tiempo real. Nosotros proponemos contraer el espacio generalmente infinito, en un grafo que capture todas las propiedades lineales del modelo. El grafo resultante es finito, si y solamenti si, el modelo tiene límites (el conjunto de sus marcas accesibles es finito). En este caso, las propiedades lineales del modelo se pueden verificar en el grafo resultante, utilizando, por ejemplo, técnicas de comprobación del modelo lineal clásico.

Palabras clave: Métodos formales, comprobación modelo, modelos temporizados, red de Petri coloreada con intervalos temporizados, contracción del espacio del estado, propiedades lineares.





1. R. Alur, T. Feder, T. Henzinger, The benefits of relaxing punctuality, Journal of ACM 43(1), 1996.        [ Links ]

2. R. Alur, D. Dill, Automata for modeling real–time systems, 17ème ICALP, LNCS 443, Springer–verlag, 1990.        [ Links ]

3. J. Bengtsson, Clocks, DBMs and States in Timed Systems, .PhD thesis, Dept. of Information Technology, Uppsala University, 2002.        [ Links ]

4. B. Berthomieu, F. Vernadat, State class constructions for branching analysis of Time Petri nests, LNCS 2619, 2003.        [ Links ]

5. B. Berthomieu, M. Diaz, "Modeling and verification of time dependent systems using time Petri nets", IEEE Transactions on Software Engineering, vol 17, n°3, March 91.        [ Links ]

6. G. Berthelot, H. Boucheneb, Occurrence graphs for interval timed coloured nets, 15th International Conference on Application and Theory of Petri Nets, Zaragoza (Spain), LNCS 815, Springer–verlag, June 1994.        [ Links ]

7. H. Boucheneb, G. Berthelot, "Contraction of the ITCPN state space", ENTCS vol.6, Issue 5, June 2002.        [ Links ]

8. H. Boucheneb, G. Berthelot, Towards a simplified building of time Petri Net Reachability graphs, in proc. of Petri Nets and Performance Models PNPM'93, IEEE Computer Society Press, October 1993.        [ Links ]

9. P. Bouyer, Timed Automata May Cause Some Troubles, Research Report LSV–02–9, 2002.        [ Links ]

10. S.Christensen, L.M.Kristensen, T.Mailand, Condensed state spaces for timed Petri Nets, 22nd International Conference On Application and Theory Of Petri Nets, 2001.        [ Links ]

11. C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool Kronos, In Hybrid Systems III, Verification and Control, LNCS 1066, Springer–verlag, 1996.        [ Links ]

12. K. Etessami, G. Holzmann, Optimizing Buchi automata, 11th International Conference on Concurency Theory (CONCUR), 2000.        [ Links ]

13. G. Gardey, O. H. Roux, O. F.Roux, Using Zone Graph Method for Computing the State Space of a Time Petri Net, Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), 2003.        [ Links ]

14. R. Hadjidj, H. Boucheneb., Much compact time petri net state class spaces useful to restore CTL* properties, in Proc. of the Fifth International Conference on Application of Concurrency to System Design (ACSD'2005), IEEE Computer Society Press, 2005.        [ Links ]

15. T. A. Henzinger, P–H. Ho, H. Wong–Toi, HyTech: A Model Checker for Hybrid Systems, Software Tools for Technology Transfer 1: 110–122, 1997.        [ Links ]

16. Pao–Ann Hsiung, Chuen–Hau Gau, "Formal synthesis of real–time embedded software by time–memory scheduling of Colored Time Petri Nets", ENTCS, vol. 6, June 2002.        [ Links ]

17. K. Jensen, Coloured Petri Nets: Basic concepts, Analysis Methods and Practical use, volumes 1 and 2, EATCS Monographs on Theoretical Computer Science, Springer–verlag, 1982.        [ Links ]

18. W. Penczek, A. Polrola, Abstraction and partial order reductions for checking branching properties of time Petri nets, In Proc. Of ICATPN, LNCS 2075, pages 323–342, 2001.        [ Links ]

19. W.M.P. Van der Aalst, Interval Timed Coloured Petri Nets and their Analysis, 14th International Conference of Application and Theory of Petri Nets, Chicago, 1993.        [ Links ]

20. E. Vicaro, "Static Analysis and Dynamic Steering of Time Dependent Systems", IEEE Transactions on Software Engineering, Vol.2, No.8, 2001.        [ Links ]

21. T. Yoneda, H. Ryuba, "CTL Model Checking of Time Petri Nets Using Geometric Regions", IEICE Trans. Inf. & Syst., Vol.E99–D, No.3, 1998.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License