SciELO - Scientific Electronic Library Online

 
vol.9 issue4Geometrical Modeling of Wideband MIMO ChannelsTwo Robust Techniques for Segmentation of Biomedical Images author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.9 n.4 Ciudad de México Apr./Jun. 2006

 

Artículos

 

Shot Noise Modeling of Heavy Tailed Activity Periods

 

Modelo de Ruido de Disparo para Periodos de Actividad con Distribución de Colas Pesadas

 

David Muñoz Rodríguez1, Francisco Davila1, Marlene Angulo Bernal2,3, Deni L. Torres Román3, and John Fonseka4

 

1 ITESM; Center for Electronics and Telecommunications; Monterrey, N.L, 64849, MEXICO.
dmunoz@itesm.mx

2 UABC, Campus Mexicali, México
mangulo@uabc.mx

3 CINVESTAV, Campus Guadalajara, México
mangulo@gdl.cinvestav.mx, dtorres@gdl.cinvestav.mx

4 University of Texas at Dallas, Engineering and Computer Sc., Richardson, USA
kjp@utdallas.edu

 

Article received on January 27, 2005; accepted on January 13, 2006

 

Abstract

For web users, transmission activity is often described in terms of the number of file requests and file sizes that have a slowly decaying survivability function. In this article we model this line activity using a flexible shot–noise representation that enables us to analyze the infrared catastrophe effect introduced by the heavy–tailed characteristics. The proposed methodology is based on the α–stable characteristics of the traffic pattern. In addition, the effective bandwidth estimation of the proposed traffic model is presented. It provides a useful approach for the data network design and the admission control mechanism. Numerical results demonstrate the impact of the different statistical parameters on the spectral performance.

Keyword: Stochastic processes, Shot noise, Traffic models.

 

Resumen

La actividad en la transmisión de los usuarios Web es frecuentemente descrita en términos del número de solicitudes de archivos y de sus tamaños, donde la función de sobrevivencia del tamaño de los archivos tiene un decaimiento lento. En este artículo se modela la actividad de línea utilizando una representación flexible del ruido de disparo que permite analizar el efecto catástrofe infrarroja introducido por las características de las distribuciones de cola pesada. La metodología propuesta es basada en las características α–estables del patrón de tráfico, presentando además la estimación del ancho de banda efectivo del modelo propuesto, lo cual brinda un enfoque muy útil para el diseño de redes de datos y los mecanismos de control de admisión. Los resultados numéricos demuestran el impacto de los diversos parámetros estadísticos en el desempeño espectral.

Palabras clave: Procesos estocásticos, ruido de disparo, modelos de tráfico.

 

DESCARGA ARTICULO EN FORMATO PDF

 

References

1. Adler R., R. Feldman, and M. Taqqu, "A Practical Guide to Heavy Tails: Statistical Techniques and Applications", Birkhauser, 1998.        [ Links ]

2. Berger, J. M. and B. Mandelbrot, A New Model for Error Clustering in Telephone Circuits, IBM Journal, 1963, pp. 224–236.        [ Links ]

3. Crovella M. E. and A. Bestavros, "Self–Similarity in World Wide Web Traffic: Evidence and Possible Causes", IEEE/ACM Trans. on Networking, Vol 5, No. 6, 1997, pp. 835–846.        [ Links ]

4. Fisher M.J. and C.M. Harris, A Method for Analyzing Congestion in Pareto and Related Queues, The Telecommunication Review, 1999, pp 15–27.        [ Links ]

5. Gilbert E. N. and H. O. Pollack, Amplitude Distribution of Shot Noise, The Bell System Technical Journal, 1960, pp. 333–350.        [ Links ]

6. Gradshteyn I.S. and I.M. Ryzhik, Tables of Integrals Series and Products, 5th Edition, Academic Press, 1994.        [ Links ]

7. Harmantzis, F.C., D. Hatzinakos and I. Lambadaris, "Effective Bandwidths and tail probabilities for Gaussian and Stable Self–Similar Traffic", IEEE International Conference on Communications 2003, Vol. 3, 11–15 May 2003. pp. 1515 – 1520.        [ Links ]

8. Johnson, N. L., S. Kotz and N. Balakrishnan, "Continuous Univariate Distributions", John Wiley, 1994        [ Links ]

9. Kelly F.P., "Notes on effective bandwidths", Stochastic Networks: Theory and applications. Royal Statistical Society Lecture Notes, F.P. Kelly, S. Zachary and I.B. Ziedins Eds. London, U.K.: Oxford Univ. Press, Vol 4, 1996, pp. 141–168.        [ Links ]

10. Krunz M. and Makowsky, A. Modeling Video Traffic using M/G/∞ Input: A Compromise Between Markovian and Long Range Dependent models, IEEE Journal on Selected Areas in Commun., Vol. 16, 1998, pp. 733–740.

11. Liu Z., N. Niclausse, and C. Jalpa–Villanueva, "Web traffic modeling and performance comparison", in E. Gelenbe: System Performance Evaluation Methodologies and applications, CRC Press, 2000.        [ Links ]

12. Leon–Garcia A., "Probability and Random Processes for Electrical Engineering", Addison Wesley, 1994.        [ Links ]

13. Lowen S. B. and M. C. Teich, Doubly stochastic Poisson Process driven by Fractal Shot Noise, Physical Review A, Vol. 43, 1991, pp. 4192–4215.        [ Links ]

14. Mandelbrot B. B., "The fractal Geometry of Nature", W.H. Freeman and Company, 1977.        [ Links ]

15. Mandelbrot B. B., "The Fractal Geometry of Nature", W.H. Freeman, Co, NY, 1999a.        [ Links ]

16. Mandelbrot B. B., "Multifractals and 1/f noise: Wild self–affinity in physics", Springer Verlag, 1999b.        [ Links ]

17. Park K. and W. Willinger, Self similar Network Traffic and performance evaluation, John Wiley, 2000.        [ Links ]

18. Parulekar M. and A. Makowsky, M/G/∞ Input Processes: A Versatile Class of Models for Network Traffic, IEEE 6th INFOCOM, 1997, pp.419–426.

19. Resnick S., " Infinite Source Poisson Model with Heavy Tailed Transmission Times", Proceedings of the American University Conference: Heavy tails and Applications, 1999.        [ Links ]

20. Ritcher, J., "Application of Pareto Error Statistics to Hagelberger Codes", IEEE Transaction on Information Theory, vol. 2, No. 4, 1960, pp 571–576.        [ Links ]

21. Ryu B. K. and S. B. Lowen, Point Process Approaches to the Modeling and Analysis of Self–Similar Traffic, Proceedings of the IEEE INFOCOM, San Francisco CA., March 1996, pp. 1468–1475.        [ Links ]

22. Samorodnitsky G. and M. S. Taqqu, Stable non Gaussian Random Process: stochastic models with infinite variance, Chapman and Hall, 1994.        [ Links ]

23. Sussman S., "Analysis of the Pareto Model to Error Statistics on Telephone Circuits", IEEE Transaction Communications Systems, 1963, pp. 213–221.        [ Links ]

24. Zolotarev V.M., "One dimensional Stable Distributions", American Mathematical Society, 1986.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License