SciELO - Scientific Electronic Library Online

 
vol.9 issue4A Supervised Discretization Method for Quantitative and Qualitative Ordered VariablesShot Noise Modeling of Heavy Tailed Activity Periods author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.9 n.4 Ciudad de México Apr./Jun. 2006

 

Artículos

 

Geometrical Modeling of Wideband MIMO Channels

 

Modelado de Canales MIMO de Banda Ancha por Métodos Geométricos

 

Alberto Alcocer Ochoa1, Ramón Parra Michel2 and Valeri Ya. Kontorovitch3

 

1 CINVESTAV del IPN, Av. IPN 2508, Col. San Pedro Zacatenco, G. A. Madero, C. P. 07360, México D. F., México.
aalcocer@cinvestav.mx

2 CINVESTAV del IPN, campus Guadalajara. Av. Científica 1145, Col. El Bajío, C. P. 45010, Jalisco, México.
rparra@gdl.cinvestav.mx

3 CINVESTAV del IPN, Av. IPN 2508, Col. San Pedro Zacatenco, G. A. Madero, C. P. 07360, México D. F., México.
valeri@cinvestav.mx

 

Article received on March 17, 2005; accepted on September 7, 2006

 

Abstract

In this paper it is shown a geometrically–based (GB) channel model that is proposed for the macro–, micro– and picocell environments. It is assumed that the local and dominant scatters' positions are given in a uniform way. The model includes some simplifications by the use of the mean values of the scatters' positions random variables (RV) as well as by the use of an asymptotic approach, i. e., it is assumed that the distance from the mobile to the base station is larger than the scatters–region's dimensions. The main idea is to find a closed form for the angle of arrival (AoA) and delay probability density functions (PDF) in order to evaluate the covariation matrix of the channel.

Keywords: Geometrical Models; Wideband MIMO Channels; Macrocell, Microcell and Picocell Environments.

 

Resumen

En este artículo se muestra un modelo de canal basado en geometría, para los ambientes de propagación macrocelda, microcelda y picocelda. Se asume que la posición de los dispersores locales y dominantes está dada de manera uniforme en cada región. El modelo incluye algunas simplificaciones mediante el uso de los valores promedio de las posiciones de los dispersores (vistas como variables aleatorias) en cada región, así como de un caso asintótico, i. e., se asume que la distancia del móvil a la estación base es mucho mayor que las dimensiones de la región donde yacen los dispersores. La idea principal detrás de este artículo es hallar una forma cerrada para función de densidad de probabilidad del ángulo de arribo y del tiempo de retardo para con ello evaluar la matriz de covarianza del canal MIMO.

Palabras Claves: Ambientes Macrocelda, Microcelda y Picocelda; Canales MIMO de Banda Ancha; Modelos Geométricos.

 

DESCARGA ARTICULO EN FORMATO PDF

 

References

1. [Alcocer04] A. Alcocer–Ochoa, R. Parra–Michel & V. Kontorovitch. "Wideband MIMO Channel Based on Geometrical Approximations". I International Conference on Electric and Electronic Engineering and X Conference on Electrical Engineering 2004, ICEEE–CIE 2004, September 8–10, 2004. Acapulco, Guerrero, México.        [ Links ]

2. [Alcocer05a] A. Alcocer–Ochoa, R. Parra–Michel & V. Kontorovitch. "The Elliptical Geometrical Channel Model for the Micro– and Picocell Environments in Wideband MIMO Communications Systems". 6th World Wireless Congress 2005, WWC 2005. 24–27 May, Palo Alto, California, U.S.A.        [ Links ]

3. [Alcocer05b] A. Alcocer–Ochoa, R. Parra–Michel & V. Kontorovitch. "Some General Properties of the Covariation Matrix for MIMO Communications Channels". Fourth Generation Mobile Forum 2005, 4GMF 2005, 11–13 July San Diego, California, U.S.A.        [ Links ]

4. [Chen04] Y. Chen & V. K. Dubey. "Accuracy of Geometric Channel–Modeling Methods". IEEE Transactions on Vehicular Technology. Vol. 53, No. 1, Pages 82–93, January 2004.        [ Links ]

5. [Chizhik02] D. Chizhik, G. J. Foshini, M. J. Gans & R. A. Valenzuela. "Keyholes, Correlations and Capacities of Multi–element Transmit and Receive Antennas". IEEE Transactions on Wireless Communications. Vol. 1, No. 2, Pages 361–368, April 2002.        [ Links ]

6. [Ertel98] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport & J. H. Reed. "Overview of Spatial Channel Models for Antenna Array Communication Systems". IEEE Personal Communications. Pages 10–22, February 1998.        [ Links ]

7. [Ertel99] R. B. Ertel & J. H. Reed. "Angle and Time of Arrival Statistics for Circular and Elliptical Scattering Models". IEEE Journal on Selected Areas in Communications. Vol. 17, No. 11, Pages 1829–1840, November 1999.        [ Links ]

8. [Jakes79] W. C. Jakes. "Microwave Mobile Communications". John Wiley & Sons, New York, 1979.        [ Links ]

9. [Kontorovitch99] V. Kontorovitch, R. Linares & H. Jardón. "Theoretical Approach Applied to EMC Measurement Problems". International Journal of Modeling and Simulation. Vol. 19, No. 4, Pages 384–389, 1999.        [ Links ]

10. [Latinovic04] Z. Latinovic, A. Abdi & Y. Bar–Ness. "On the Utility of the Circular Ring Model for Wideband Channels". IEEE Transactions on Vehicular Technology Conference, VTC 2004 Fall, September 2004, Los Angeles, Ca. U.S.A.        [ Links ]

11. [Laurila98] J. Laurila, A. F. Molisch & E. Bonek. "Influence of the Scatters Distribution on the Power Delay Profile and the Power Azimuth Spectra of Mobile Radio Channels". IEEE Proceedings of the 5th International Symposium on Spread Spectrum Techniques and Applications 1998. Vol. 1, Pages 267–271, September 2–4, 1998.        [ Links ]

12. [Molisch04] A. F. Molisch. "A Generic Model for MIMO Wireless Propagation Channels in Macro– and Microcells". IEEE Transactions on Signal Processing. Vol. 52, No. 1, Pages 61–71, January 2004.        [ Links ]

13. [Oestges03] C. Oestges, V. Erceg & A. J. Paulraj. "A Physical Scattering Model for MIMO Macrocellular Broadband Wireless Channels". IEEE Journal on Selected Areas in Communications. Vol. 21, No. 5, Pages 721–729, June 2003.        [ Links ]

14. [Oestges05] C. Oestges, B. Clerckx, D. Vanhoenacker–Janvier & A. J Paulraj. "Impact of Fading Correlations on MIMO Communication Systems in Geometry–Based Statistical Channel Models". IEEE Transactions on Wireless Communications, Vol. 4, No. 3. Pages 1112–1120. May 2005.        [ Links ]

15. [Papoulis02] A. Papoulis & S. U. Pillai. "Probability, Ramdom Variables, and Stochastic Processes". McGraw Hill. 4th Edition, New York, 2002.        [ Links ]

16. [Piechocki01] R. J. Piechocki, J. P. McGeehan & G. V. Tsoulus. "A New Stochastic Spatio–Temporal Propagation Model (SSTPM) for Mobile Communications with Antenna Arrays". IEEE Transactions on Communications. Vol. 49, No. 5, Pages 855–862, May 2001.        [ Links ]

17. [SCM03] SCM. "Spatial Channel Model Text Description". Spatial Channel Model AHG (Combined ad–hoc form 3GPP & 3GPP2), April 2003.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License