SciELO - Scientific Electronic Library Online

vol.7 issue4On Modelling an Immune SystemSequences Cifrantes of Metallic Numbers to leave of Continuous Fractions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.7 n.4 Ciudad de México Apr./Jun. 2004




Dynamic Random Fuzzy Cognitive Maps


Mapas Cognitivos Difusos Aleatorios Dinámicos


José Aguilar


CEMISID, Departamento. de Computación Facultad de Ingeniería Universidad de los Andes Av. Tulio Febres. Mérida, Venezuela. E–mail:


Article received on June 28, 2002
Accepted on May 4, 2004



A fuzzy cognitive map is a graphical means of representing arbitrary complex models of interrelations between concepts. The purpose of this paper is to describe a dynamic/adaptive fuzzy cognitive map based on the random neural network model. Previously, we have developed a random fuzzy cognitive map and illustrated its application in the modeling of processes. The adaptive fuzzy cognitive map changes its fuzzy causal web as causal patterns change and as experts update their causal knowledge. Our model carries out inferences via numerical calculation instead of symbolic deduction. We show how the adaptive/dynamic random fuzzy cognitive map can reveal implications of models composed of dynamic processes.

Keywords: Random Neural Network, Fuzzy Logic, Fuzzy Cognitive Maps, Dynamic Systems.



Un Mapa Cognitivo Difuso es un medio gráfico de representación de modelos complejos de interrelaciones entre conceptos. El propósito de este artículo es describir un Mapa Cognitivo Difuso Dinámico/Adaptivo basado en el Modelo de Redes Neuronales Aleatorias. En trabajos previos, nosotros hemos desarrollado un Mapa Cognitivo Difuso Aleatorio y mostrado su aplicación en el modelado de procesos. Nuestro modelo realiza inferencias a través de cálculos numéricos en vez de deducciones simbólicas. Ahora bien, el Mapa Cognitivo Difuso Adaptivo cambia su red de relaciones causales difusas como un patrón causal cambia y un experto actualiza su conocimiento causal. Nosotros mostramos cómo el Mapa Cognitivo Difuso Dinámico/Adaptivo puede ser usado para describir implicaciones en el modelado de procesos dinámicos.

Palabras Clave: Redes Neuronales Aleatorias, Lógica Difusa, Mapas Cognitivos Difusos, Sistemas Dinámicos.





This work was partially supported by CONICIT grant "Agenda Petróleo: 97003817", CDCHT–ULA grant I–621–98–02–A and CeCalCULA (High Performance Computing Center of Venezuela).



1. Aguilar, J. "Definition of an Energy Function for the Random Neural to solve Optimization Problems", Neural Networks, Pergamo, Vol. 11, No. 4, pp. 731–738, 1998.         [ Links ]

2. Aguilar, J. "Learning Algorithm and Retrieval Process for the Multiple Classes Random Neural Network Model". Neural Processing Letters, Kluwer Academic Publishers, Vol. 13, No. 1, pp. 81–91, 2001.         [ Links ]

3. Aguilar, J. "A Fuzzy Cognitive Map Based on the Random Neural Model". Lecture Notes in Artificial Intelligence, Springer–Verlag, Vol. 2070, pp. 333–338, 2001.        [ Links ]

4. Atalay V., Gelenbe E., Yalabik N. "The random neural network model for texture generation", Intl. Journal of Pattern Recognition and Artificial Intelligence, Vol. 6(1), pp. 131–141, 1992.        [ Links ]

5. R. Axelrod, "Structure of Decision: the cognitive maps of political elites. Princeton University press, New Jersey, 1976.         [ Links ]

6. Craiger J., Goodman D., Wiss R., Butler B. "Modeling Organizational Behavior with Fuzzy Cognitive Maps" Intl. Journal of Computational Intelligence and Organizations, vol. 1, pp. 120–123, 1996.        [ Links ]

7. Dickerson J., Kosko B. "Virtual Worlds as Fuzzy Cognitive Map," Presence, Volume 3, Number 2, 173–189, 1994.         [ Links ]

8. Dickerson J., Kosko B. "Virtual Worlds as Fuzzy Dynamic Systems," in Technology for Multimedia, (B. Sheu, editor), IEEE Press, 1996.         [ Links ]

9. Gelenbe E. "Random neural networks with positive and negative signals and product form solution", Neural Computation, Vol. 1(4), pp. 502–511, 1989.        [ Links ]

10. Gelenbe E. "Stability of the random neural networks", Neural Computation, Vol. 2 (2), pp. 239–247, 1990.        [ Links ]

11. Gelenbe E. "Theory of the random neural network model", Neural networks: Advances and Applications (E. Gelenbe editor), North–Holland, Pay s–Bas, 1991.        [ Links ]

12. Kosko B. "Fuzzy Cognitive Maps", Int. Journal of Man–Machine Studies, Vol. 24, pp. 65–75, 1986.         [ Links ]

13. Kosko B. "Neural Networks and Fuzzy systems, A dynamic system approach to machine intelligence", Prentice Hall, New Jersey, 1992.        [ Links ]

14. Kosko B., Dickerson J. "Fuzzy virtual worlds". AI Expert, pp. 25–31, 1994.         [ Links ]

15. Kosko B. "Fuzzy Engineering", Prentice–Hall, New Jersey, 1999.         [ Links ]

16. Miao Y., Liu C. "On causal inference in Fuzzy Cognitive Map", IEEE Transaction on Fuzzy Systems, Vol. 8, N. 1, pp. 107–120, 2000.         [ Links ]

17. Miao Y., Liu C, Siew C., Miao C. "Dynamic Cognitive Network: an extension of Fuzzy Cognitive Maps", IEEE Transaction on Fuzzy Systems, to appear.         [ Links ]

18. Pelaez C., Bowles J. "Using fuzzy cognitive maps as a system model for failure models and effects analysis", Information Sciences, Vol. 88, pp. 177–199, 1996.         [ Links ]

19. Stylios C., Georgopoulos V., Groumpos P. "Introducing the theory of Fuzzy Cognitive Maps in Distributed Systems", Prof. 12th IEEE Int. Symposium on Intelligent Control, July 1997, Istanbul, Turkey, 55–60.        [ Links ]

20. Stylios C., Georgopoulos V., Groumpos P. "Applying Fuzzy Cognitive Maps in Supervisory Control Systems", Proc. Of European Symposium on Intelligent Techniques, pp. 131–135, Bari, Italy, 1997.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License