SciELO - Scientific Electronic Library Online

vol.7 issue4A Stabilizable Control Laws For a Rotational Pendulum: A Trajectory Planning ApproachDynamic Random Fuzzy Cognitive Maps author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.7 n.4 Ciudad de México Apr./Jun. 2004




On Modelling an Immune System


Sobre un Modelo Computacional del Sistema Inmune


Raúl Monroy1, Rosa Saab2 and Fernando Godínez3


1 Departamento de Ciencias Computacionales, Campus Estado de México del Tecnológico de Monterrey Carretera al lago de Guadalupe Km 3.5, Col. Margarita Maza de Juárez, Atizapán de Zaragoza, 52926, México, México. E–mail:

2 Instituto Tecnológico y de Estudios Superiores de Coacalco, 16 de Septiembre 54, Col. Cabecera Municipal, Coacalco de Berriozábal, Estado de México, 55717, México. E–mail:

3 Centro de Sistemas Inteligentes, Campus Monterrey del Tecnológico de Monterrey, CETEC Torre Sur 5o Piso, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, México. E–mail:


Article received on March 27, 2003
Accepted on June 08, 2004



Immune systems of live forms have been an abundant source of inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to challenging problems of modern computing. However, research in artificial immune systems has overlooked establishing a coherent model of known immune system behaviour. This paper aims reports on an preliminary computer model of an immune system, where each immune system component is specified in terms of its observable behaviour using a suitable process algebra. Our model is not only suitable to simulation but also and more importantly to formal analyzes of immune system behaviour.

Keywords: Multiagent systems and Distributed AI, Immunology, Immune Based Computer Systems.



El sistema inmune de los seres vivientes ha sido una fuente rica de inspiración para científicos en computación contemporáneos. Estrategias de solución de problemas, cuyos orígenes se encuentran en fenómenos inmunológicos, han sido exitosamente aplicadas en problemas desafiantes de la computación moderna. Sin embargo, el trabajo de investigación en sistemas inmunológicos artificiales ha ignorado el establecer un modelo coherente que incorpore comportamientos conocidos y aceptados del sistema inmune. Este artículo reporta un modelo computacional preliminar del sistema inmune, en el cual cada componente del mismo es especificado en términos de su comportamiento observable, usando una álgebra de procesos adecuada. Nuestro modelo no sólo es adecuado para la simulación sino también y aún más importante para el análisis formal del comportamiento de un sistema inmune.

Palabras Clave: Sistemas Multiagentes y AI Distribuida, Inmunología, Sistemas de Cómputo basado en Inmunidad.





This research was partially supported by CONACYT grants CONACYT–BMBF J200.1442/2002 and 33337–A.



1. R. Belew and S. Forrest. Learning classifier systems, from foundations to applications. In P.L. Lanzi, W. Stolzmann, and W. Wilson S, editors, Proceedings of IWLCS '99, volume 1813 of Lecture Notes in Computer Science. Springer, 2000.         [ Links ]

2. J. A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. Theoretical Compute Science, 37(1):77—121, 1985.        [ Links ]

3. D. Dasgupta. Artificial Immune System and Their Applications. Springer, U.S.A., 1998.         [ Links ]

4. P. De Haeseleer, S. Forrest, and P. Helman. An immunological approach to change detection: Algorithms analysis an implications. In Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, pages 110—119. IEEE Computer Society Press, 1996.        [ Links ]

5. S. Forrest, S.A. Hofmeyr, and A. Somayaji. Computer immunology. Communications of the Association for Computing Machinery, 40(10):88—96, 1997.         [ Links ]

6. S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating PEPA models. IEEE Transactions on Software Engineering, 27(5):449—464, May 2001.         [ Links ]

7. M.J. Hatcher, A.M. Dunn, and C. Tofts. The effect of the embryonic bottleneck on vertically transmitted parasites. In Proceedings of 1st International Conference on Information Processing in Cells and Tissues, page In Press. University of Liverpool, 1996.         [ Links ]

8. M.J. Hatcher and C. Tofts. The effect of point of expression on ESS sex ratios. Journal of Theoretical Biology, 175:263—266, 1995.         [ Links ]

9. M.J. Hatcher and C. Tofts. The evolution of polygenic sex determination with potential for environmental manipulation. Technical Report Series, Department of Computer Science, UMCS–95–4–2, University of Manchester, 1995.        [ Links ]

10. M. Hennessy and H. Lin. Proof systems for message passing process algebras. Formal Aspects of Computing, 8(4): 379—407, 1996. Also available from Sussex as Computing Science Technical Report 3/93.        [ Links ]

11. Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.         [ Links ]

12. C.A.R. Hoare. Communicating sequential processes. Communications of the Association for Computing Machinery, 21(8):666—77, 1978.        [ Links ]

13. S. Hofmeyr and S. Forrest. Architecture for an artificial immune system. Evolutionary Computation Journal, 8(4):443—473, 2000.         [ Links ]

14. ISO. Information processing systemsOpen systems interconnection. LOTOS—A formal description technique based on the temporal ordering of observational behaviour. ISO 8807, 1989.        [ Links ]

15. R. López, F. Díaz, and S. Arias. Biología Celular. Editorial Iberoamérica, México, 1991.         [ Links ]

16. R. Milner. Communication and concurrency. Prentice Hall, London, 1989.         [ Links ]

17. R. Milner, J. Parrow, and D. Walker. A calculus for mobile processes, part 1. Information and Computation, 100(1): 1—40, 1992. Also available from Edinburgh, as Research Report ECS–LFCS–89–95.         [ Links ]

18. R. Milner, J. Parrow, and D. Walker. A calculus for mobile processes, part 2. Information and Computation, 100(1):41—77, 1992. Also available from Edinburgh, as Research Report ECS–LFCS–89–96.         [ Links ]

19. R. Milner, J. Parrow, and D. Walker. Mobile logics for mobile processes. Theoretical Compute Science, 114:149—71, 1993. Also available from Edinburgh, as Research Report ECS–LFCS–91–136.         [ Links ]

20. Raúl Monroy. A process algebra model of the immune system. In M.G. Negoita, editor, Proceedings of the 8th Knowledge–Based Intelligent Information & Engineering Systems, KES'04. Lecture Notes in Artificial Intelligence, Vol. (to appear), pages (to appear), Wellington, New Zealand, September 2004. Springer–Verlag.         [ Links ]

21. J. Parrow and V. Björn. The fusion calculus: Expressiveness an symmetry in mobile processes. In Proceedings of the 13th Annual IEEE Symposium on Logic in Compute Science, pages 176—185, 1998.         [ Links ]

22. S. Robbins and R. Cotran. Pathologic basis of disease. W B Saunders Co, U.S.A., 1984.        [ Links ]

23. R. Saab, R. Monroy, and F. Godínez. Towards a model for an immune system. In, C.A. Coello–Coello, A. De Albornoz, L.E. Sucar, and O. Cairó, editors, 2nd Mexican International Conference on Artificial Intelligence, MICAI '02, pages 401—410. Springer– Verlag, 2002.         [ Links ]

24. L.A. Segel and I.R. Cohen. Design principles for the immune system and other distributed autonomous systems. Oxford University Press, New York, U.S.A., 2000.        [ Links ]

25. C. Stirling. An Introduction to modal an temporal logics for CCS. In 1989 UK / Japan workshop on concurrency, Lecture Notes in Computer Science, v.491, pages 2—20. Springer–Verlag, 1990.         [ Links ]

26. D. Stites and T. Abba. Medical immunology. McGraw–Hill, 1997.         [ Links ]

27. C. Tofts. Processes with probabilities, priority and time. Formal Aspect s of Computing, 6(5): 536—564, 1994.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License