SciELO - Scientific Electronic Library Online

 
vol.7 issue1One Approach to the Time-Optimal Strategy Formulation for Analog Circuit Design author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.7 n.1 Ciudad de México Jul./Sep. 2003

 

Resumen de tesis doctoral

 

Medida de similitud para objetos 2D y 3D a través de una energía de transformación óptima

 

Tesista: Hermilo Sánchez –Cruz
Centro de Electrónica y Telecomunicaciones
Instituto Tecnológico y de Estudios Superiores de Monterrey
Av. Eugenio Garza Sada 2501
Col. Tecnológico. 64849 Monterrey, Nuevo León. México
Fax: (81) 8359 7211

E–mail: herssan@itesm.mx

Director de Tesis: Ernesto Bribiesca Correa
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas.
Universidad Nacional Autónoma de México
Circuito Escolar, Ciudad Universitaria
04510, México DF
.
E–mail: ernesto@leibniz.unam.mx

 

Abstract

A method of transforming an object O1 into another object O2 is presented in this work. The computation of this transformation is performed to measure shape similarity of objects. The considered objects are composed of spels (voxels for 3D objects and pixels for 2D objects). The difference in the shape of objects is performed by computing the number of spels to be moved, and by the distance they have to cover i transforming one object into another.

This work is based on a method of transformation of objects, presented by Bribiesca [1] (1996). The contribution of this work is to optimise the Bribiesca's method by using principal axes to orientate objects, and by computing minimum energy or distance, to go from an object into another. To show the most important properties of our method, a set of 2D objects are analysed, and finally, this method is applied to 3D real world–objects, like those of some cars and some volcanoes near to the basin of Mexico.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) y a la UNAM por los apoyos otorgados para la realizar el doctorado.

 

Referencias

1. E. Bribiesca, Measuring 3–D shape similarity using progressive transformations, Pattern Recognition 29 (1996) 1117–1129.        [ Links ]

2. Ballard, D. H. and Brown, C. Computer Vision, Prentice–Hall, Englewood Cliffs, NJ (1982).        [ Links ]

3. Henk J.A.; M. Heijmans, Alexander V. Tuzikov. Similarity and Symmetry Measures for Convex Shapes Using Minkowski Addition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (9) (Sept. 1998).        [ Links ]

4. Otterloo, Van; Peter, J. A. Contour–Oriented Approach to Shape Analysis. Prentice Hall, 368pp. (1991).        [ Links ]

5. Freeman, H. On the Encoding of Arbitrary Geometric Configurations, IRE Trans. Electron. Comput. EC–10 (1961) 260–268.        [ Links ]

6. Bribiesca, E. A New Change Code. Pattern Recognition 32 (1999) 235–251.        [ Links ]

7. Arkin, Esther M.; Chew L. Paul; Huttenlocher, Daniel P.; Kedem Klara; and Mitchel Joseph S. B. An Efficient Computable Metric for Comparing Polygonal Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (3) 1991.        [ Links ]

8. Jain K., Fundamentals of Digital Image Processing. Prentice Hall Information and System Sciences Series. Thomas Kailath, series Editor, (1989) 569 pp.        [ Links ]

9. Danielsson, Per–Erik. Note a New Shape Factor. Computer Graphics and Image Processing. 7, (1978) 292–299.        [ Links ]

10. Boyse, J. W., Data Structure for Solid Modeller, NFS Workshop on the Representation on Three–Dimensional Objects, University of Pennsylvania (1979).        [ Links ]

11. Brooks R., Model Based 3–D Interpretations of 2–D Images, IEEE Trans. Pattern Anal. Mach. Intell., 5 (2), (1983) 140–150.        [ Links ]

12. Dickinson, S. J.; Pentland, A. P.; Rosenfeld, A. From volumes to views: an approach to 3–D object recognition, CVGIP: Image Understanding, 55 (1992) 130–154.        [ Links ]

13. Besl, P. J. and Jain, R. C. Three–dimensional Object Recognition, ACM Computing Surveys, 17 (1985) 75–139.        [ Links ]

14. Jain, A. K.; Hoffman, R. Evidence–based Recognition of 3–D Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (1988) 783–802.        [ Links ]

15. Cohen–Or, D.; Levin D. and Solomovici, A. Three–dimensional Distance Field Metamorphosis, ACM Transactions on Graphics, 17 (1998) 116–141.        [ Links ]

16. Lohmann, G. Volumetric Image Analysis, Wiley & Sons and B. G. Teubner Publishers, New York, NY, (1998).        [ Links ]

17. Bribiesca, E. and Wilson, R. G. A Measure of 2D Shape–of–Object Dissimilarity. Appl. Math. Lett., 10 (6) (1997) 107–115.        [ Links ]

18. Faber, Tracy L, Stokety, Ernest M. Orientation of 3D Structures in Medical Images. IEEE Transactions on Pattern and Machine Intelligence, 10 (5), (Sep 1988) 626–633.        [ Links ]

19. Gálvez, J. M. and Canton, M. Normalisation and Shape Recognition of Three–Dimensional Objects by 3D Moments. Pattern Recognition, 26 (5) (1993) 667–681.        [ Links ]

20. Sánchez–Cruz, Hermilo and Bribiesca, Ernesto. A Method of optimum transformation of 3D objects used as a measure of shape dissimilarity. Image and Vision Computing Journal. Elsevier. Vol. 21. No. 3, pp 1027–1036 (2003).        [ Links ]

21. Borisenko, A. I. and Tarapov, I. E. Vector and Tensor Analysis, Dover Publications, Inc., New York (1979).        [ Links ]

22. Karush, W. Webster's New World Dictionary of Mathematics, Simon & Schuster, Inc., New York, (1989).        [ Links ]

23. Sánchez, Hermilo. Normalized similarity measure of 2D objects and their morphing. VII Congreso Iberoamericano de Reconocimiento de Patrones (CIARP) 2002, Ciudad de México. ISBN: 970189476–6, ed. Board, pp 75–86.        [ Links ]

24. Hu, M. K. Visual Pattern Recognition by Moment Invariants, IEEE Transactions in Information Theory, 8 (1962) 179–187.        [ Links ]

25. Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications, The MacMillan Press Ltd, London and Basingstoke, (1976).        [ Links ]

26. Gould, R., Graph Theory, Emory University, The Benjamin/Cummings Publishing Company, Inc. (1988)        [ Links ]

27. Evans, James R, and Minieka, Edward. Optimisation Algorithms for Networks and Graphs. Marcel Dekker, Inc, 470 pp. 1992.        [ Links ]

28. Meisel, William S. Computer–Oriented Approaches to Pattern Recognition. Academic. Press. (1974).        [ Links ]

29. Bribiesca, E. Measuring 2–D Shape Compactness Using the Contact Perimeter. Comput. Math. Appl., 33 (11) (Jun 1997) 1–9.        [ Links ]

30. Egerváry, J., Matrixok Komb inatorikus Tulajdonságairól. Mathematika és Fizikai Lápok, vol 38 (1931), 16–28.        [ Links ]

31. Sánchez, Hermilo. Optimización de una medida de Semejanza para Objetos Tridimensionales a Partir de Invariantes y Transformaciones. Computación y Sistemas, 3 (4) (Abr–jun 2000).        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License