SciELO - Scientific Electronic Library Online

 
vol.6 issue3Exact and Approximate Prefix Search under Access Locality Requirements for Morphological Analysis and Spelling CorrectionNoisy Binary Texture Recognition Using the Coordinated Cluster Transform author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.6 n.3 México Jan./Mar. 2003

 

Artículo

 

Filtros Robustos RM–KNN con Diferentes Funciones de Influencia para Supresión de Ruido Impulsivo en Imágenes Digitales

 

Robust RM–KNN Filters with Different Influence Functions for Removal of Impulsive Noise in Digital Images

 

Francisco Gallegos1, Volodymyr Ponomaryov2, Oleksiy Pogrebnyak3 y Luis Niño de Rivera2

 

1 Escuela Superior de Ingeniería Mecánica y Eléctrica, U.P.A.L.M, Zacatenco Av. IPN s/n, Col. Lindavista, C.P. 07738, México, D.F. E–mail: fcogf@hotmail.com

2 Escuela Superior de Ingeniería Mecánica y Eléctrica, U.P. Culhuacán del IPN Av. Sta. Ana 1000, Col. San Francisco Culhuacán, C.P. 04430, México, D.F. E–mail: vponomar@ipn.mx

3 Centro de Investigación en Computación del IPN Av. Juan de Dios Bátiz s/n Col. Lindavista C.P. 07738, México D.F. E–mail: olek@cic.ipn.mx

 

Artículo recibido en Diciembre 12, 2002
Aceptado en Marzo 15, 2003

 

Resumen

Presentamos la implementación de filtros robustos para imágenes con supresión de ruido impulsivo y preservación de detalles. Los esquemas de filtrado usan una técnica similar al filtro KNN para proveer la preservación de detalles finos y la combinación de estimadores–M con el estimador de la mediana o Wilcoxon proveen la supresión de ruido impulsivo. Usamos diferentes tipos de funciones de influencia en el estimador–Mpara proveer una mejor supresión de ruido impulsivo. El filtrado de secuencias de vídeo corrompidas con ruido impulsivo demuestra que los métodos propuestos potencialmente proveen una solución para mejorar la calidad de las transmisiones de TV/Vídeo. La eficiencia de los filtros propuestos fue evaluada por numerosas simulaciones. La implementación de los filtros propuestos fue realizada en tiempo real mediante el uso del DSP TMS320C6701.

Palabras Clave: Filtros de orden estadístico, filtros RM–KNN, DSP TMS320C6701.

 

Abstract

We present the implementation of robust image filtering for impulsive noive suppression with detail preservation. The filtering schemes use a similar to KNN filter technique to provide fine detail preservation and the redescending M–estimators combined with the median or Wilcoxon estimator to provide impulsive noise rejection. We use different types of influence functions in the M–estimator to provide better impulsive noise suppression. The filtration of image sequences corrupted by impulsive noise demonstrates that the proposed methods potentially could provide a solution to quality TV/Video transmission. The efficiency of the proposed filters has been evaluated by numerous simulations. The implementation of proposed filters was realized in real–time by means of use of DSP TMS320C6701.

Keywords: Order Statistics Filters, RM–KNN filters, DSP TMS320C6701.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores dan las gracias al Instituto Politécnico Nacional y al programa PROMEP SUPERA por los apoyos brindados.

 

Referencias

Pitas I., and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles and Applications, Kluwer Academic Publisher, 1990.        [ Links ]

Astola J., and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering, CRC Press, Boca Raton–New York, 1997.        [ Links ]

P.J. Huber, Robust Statistics. Wiley, 1981.        [ Links ]

J. L. Hodges and E. L. Lehmann. "Estimates of location based on rank tests". Ann. Math. Statist., 34:598–611, 1963.        [ Links ]

Hampel F. R., E. M. Ronchetti, P. J. Rouseew, and W. A. Stahel, Robust Statistics. The approach based on influence function, Wiley, New York, 1986.        [ Links ]

Bovik A., Handbook of Image and Video Processing, Academic Press, San Diego CA, 2000.        [ Links ]

Kotropoulos C, and I. Pitas, Nonlinear Model–Based Image/Video Processing and Analysis, John Wiley & Sons Inc., 2001.        [ Links ]

Mitra S. K., and G. L. Sicuranza, Nonlinear Image Processing, Academic Press, San Diego CA, 2001.        [ Links ]

Ponomaryov V. I., and O. B Pogrebnyak, "Novel robust RM filters for radar image preliminary processing", Journal of Electronic Imaging, Vol. 8, No. 4, 1999, pp. 467–477.        [ Links ]

Gallegos–Funes F. J., V. I. Ponomaryov, V. F. Kravchenko, and L. Nino–de–Rivera, "Robust Detail Preserving Image Filter by Means of Use DSP TMS320C6701", Telecommunications and Radio Engineering, Vol. 56, No. 1, 2001, pp. 79–82.        [ Links ]

Brownrigg D. R. K., "The Weighted Median Filter", Commun. Assoc. Comput. Mach, Vol. 27, Aug. 1984, pp. 887–818.        [ Links ]

Yli–Harja O., J. Astola and Y. Neuvo, "Analysis of properties of stack and weighted median filters", IEEE Trans. Acoust., Speech, Signal Processing, Vol. 39, No. 2, 1991, pp. 395–410.        [ Links ]

Wichman R., J. Astola, P. Heinonen and Y. Neuvo, "FIR–median hybrid filters with excellent trasient response in noisy conditions", IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, Dec. 1990, pp. 2108–2117.        [ Links ]

Hardie R. C, and C. G. Boncelet, "LUM filters: a class of rank order based filters for smoothing and sharpening", IEEE Trans. Signal Processing, Vol. 41, March 1993, pp. 1061–1076.        [ Links ]

Chen T., K. Ma and L. Chen, "Tri–State Median filter for image denoising," IEEE Trans. Image Process. 8(12), pp. 1834–1838, 1999.        [ Links ]

Chen T. and H. R. Wu, "Adaptive impulse detection using center–weighted median filters," IEEE Signal Processing Letters, 8(1), 1–3, 2001.        [ Links ]

Abreu E., M. Lightstone, S. K. Mitra and K. Arakawa, "A new efficient approach for the removal of impulse noise from highly corrupted images", IEEE Trans. Image Process, Vol. 5, No. 6, 1996, pp. 1012–1025.        [ Links ]

Wei–Yu H., and Lin Ja–Chen, "Minimum–maximum exclusive mean (MMEM) filter to remove impulse noise from highly corrupted images", Electronics Letters, Vol. 33, No. 2, 1997, pp. 124–125.        [ Links ]

Özkan M. K., M. I. Sezan and A. Murat, "Adaptive motion–compensated filtering of noisy image sequences," IEEE Trans. Circuits and Syst. For Video Tech. 3(4), 277–290, 1993.        [ Links ]

Huang T. S., G. J. Yang and G. Y. Tang, "A Fast two–dimentional median filtering algorithm", IEEE Trans. Acoust. Speech, Signal Process. ASSP–27, 1979, pp. 13–18.        [ Links ]

Pitas I., "Fast algorithms for running order and max/min calculations", IEEE Trans. Circuits and Systems, Vol. 36, No. 6, 1989, pp. 795–904.        [ Links ]

Texas Instruments, TMS320C6201/6701 Evaluation Module User's Guide, SPRU269D, Texas Instruments Incorporated, 1998.        [ Links ]

Texas Instruments, TMS320C6000 Optimizing Compiler User's Guide, SPRU187G, Texas Instruments Incorporated, 2000.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License