SciELO - Scientific Electronic Library Online

 
vol.58 número1Depósitos epitermales en México: actualización de su conocimiento y reclasificación empíricaDepósitos de Pb-Zn-Cu-Ba-F-Sr epigenéticos estratoligados en series sedimentarias en relación con salmueras de cuenca: depósitos de tipo “Mississippi Valley” (MVT) y similares en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Boletín de la Sociedad Geológica Mexicana

versión impresa ISSN 1405-3322

Bol. Soc. Geol. Mex vol.58 no.1 Ciudad de México ene. 2006

https://doi.org/10.18268/bsgm2006v58n1a3 

Artículos

Procesos de mineralización en manantiales hidrotermales submarinos someros. Ejemplos en México

Mineralizing processes at shallow submarine hydrothermal vents: examples from Mexico

Carles Canet1  * 

Rosa María Prol-Ledesma1 

1Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, México D.F., 04510, México.


Resumen

El estudio geoquímico y mineralógico realizado en varias localidades con manantiales hidrotermales submarinos someros (emplazados a menos de 200 mbnm) sugiere que este tipo de actividad puede haber generado yacimientos importantes de óxidos, sulfuros y metales preciosos. La relevancia del estudio de estos sistemas de manantiales reside en el hecho de que, además de ser los análogos actuales de algunos depósitos metalíferos de interés económico, éstos soportan ecosistemas especializados, caracterizados por la coexistencia y competencia de organismos quimiosintéticos y fotosintéticos. En relación a la actividad metabólica de los primeros tienen lugar algunos procesos biogeoquímicos y de mineralización similares a los que se han descrito en ambientes oceánicos de chimeneas mineralizantes y en infiltraciones frías de hidrocarburos.

La profundidad máxima que define a los manantiales hidrotermales submarinos someros como tales es de 200 m. Este límite de profundidad determina un cambio brusco en los parámetros ambientales y de estructura de las comunidades bióticas, y coincide con un aumento en la pendiente de la curva de ebullición respecto a la presión para el agua marina.

Los fluidos hidrotermales de los manantiales submarinos someros presentan características químicas e isotópicas intermedias entre los de los manantiales de gran profundidad y los de los sistemas geotérmicos continentales. Generalmente, la salinidad del agua termal es inferior a la del agua de mar, lo cual implica, junto con la composición isotópica, la presencia en el fluido de una importante componente de agua meteórica.

Un rasgo característico de los sistemas hidrotermales someros es la presencia de una fase gaseosa exsuelta, que en muchos casos es muy rica en CO2. Dicha fase puede contener, además, cantidades elevadas de N2 y CH4 en sistemas cuyos fluidos interaccionan con sedimentos, y de H2S en sistemas vinculados a actividad fumarólica de volcanes.

En las costas occidentales de México se conocen sistemas hidrotermales submarinos someros en Punta Banda y Bahía Concepción en la península de Baja California, y en Punta Mita en Nayarit. Dichos sistemas están emplazados en contextos de margen continental afectado por extensión tectónica con un elevado gradiente geotérmico, y en ningún caso presentan vínculos claros con actividad volcánica. Su estudio ha generado un volumen importante de información acerca de sus características geoquímicas y mineralógicas, así como de los procesos que desencadenan la precipitación de minerales alrededor de las zonas de descarga de fluidos hidrotermales. Además, los sistemas de manantiales hidrotermales someros podrían suponer una potencial fuente de energía geotérmica.

Palabras clave: Manantiales hidrotermales; zona nerítica; quimiosíntesis; yacimientos minerales

Abstract

Recent mineralogical and geochemical studies on shallow submarine hydrothermal vents (at water depths < 200 mbsl) suggest that their activity could have been responsible for the formation of oxide, sulfide and precious metal-bearing ores. Therefore, shallow submarine vents may be considered as modern analogues of some economic ore deposits.

The boundary between shallow and deep hydrothermal vents can be established at a depth of 200 mbsl, which represents an abrupt change in the environmental parameters and in the structure of the biotic communities. In addition, this depth corresponds to an increase of the slope of the boiling curve of seawater with respect to pressure.

Shallow submarine vents support complex specialized biotic communities, characterized by the coexistence and competition of chemosynthetic and photosynthetic organisms. Some biogeochemical and biomineralization processes related to chemosynthesis are similar to those described in deep ocean hydrothermal vents and in cold seeps.

Hydrothermal shallow vent fluids show intermediate chemical and isotopic characteristics between those of deep vents and of continental geothermal systems. Commonly, vent water has lower salinities than seawater. This fact, along with isotopic compositions, is evidence for large contributions of meteoric water in these vents. Venting of exsolved gas, evidenced by continuous bubbling, is a striking feature of shallow submarine hydrothermal systems. In most cases vent gas is rich in CO2, but it can be rich in N2 and CH4 in vent systems related to thick sedimentary series, and rich in H2S in vents related to volcanic fumaroles.

In Mexico, shallow submarine hydrothermal venting has been reported in Punta Banda and Bahía Concepción in Baja California Peninsula, and in Punta Mita in Nayarit. The tectonic setting of these hydrothermal systems corresponds to continental margins affected by extension, with anomalously high geothermal gradients. These vents do not show obvious links with volcanic activity. Their study has contributed to the understanding of mineralogical and geochemical processes in shallow submarine hydrothermal vents. These systems, in addition, may be a potential source of geothermal energy.

Key words: Hydrothermal vents; neritic zone; chemosynthesis; ore deposits

DESCARGAR ARTÍCULO EN FORMATO PDF

Agradecimientos

Este trabajo se realizó en el marco de los proyectos PAPIIT IN-122604 e IN-107003. Antoni Camprubí nos animó a escribir este artículo y, además, sus comentarios y su exhaustiva revisión contribuyeron a mejorar significativamente el texto. Asimismo, los comentarios de Jordi Tritlla fueron muy beneficiosos para la mejora del manuscrito.

Agradecemos a A. Camprubí, M. Dando, P. Dando, M.J. Forrest, J. Ledesma Vázquez, A. López Sánchez, A. Melwani, A.A. Rodríguez Díaz, M.A. Torres Vera y R.E. Villanueva Estrada el apoyo proporcionado en el trabajo de campo. Agradecemos a S.I. Franco sus observaciones sobre el manuscrito. Las imágenes de microscopio electrónico de barrido se obtuvieron en los Serveis Científico-Tècnics de la Universitat de Barcelona y en los Institutos de Geofísica y de Geología de la Universidad Nacional Autónoma de México, con la ayuda de R. Fontarnau, C. Linares López y M. Reyes Salas, respectivamente.

Referencias bibliográficas

Alfonso, P., Prol-Ledesma, R.M., Canet, C., Melgarejo, J.C., Fallick, A.E., 2005, Isotopic evidence for biogenic precipitation as a principal mineralization process in coastal gasohydrothermal vents, Punta Mita, Mexico: Chemical Geology, 224, 113-121. [ Links ]

Allan, J.F., Nelson, S.A., Luhr, J.F., Carmichael, J., Wopat, M., Wallace, P.J., 1991, Pliocene-Recent rifting in SW Mexico and associated volcanism: An exotic terrane in the making, en Dauphin, J.P., Simoneit, R.R.T. (eds.), The Gulf and Peninsular Provinces of the Californias: Tulsa, Oklahoma, E.U.A., American Association of Petroleum Geologists Memoirs, 47, 425-445. [ Links ]

Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., Inguaggiato, S., 2003, Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy: Geobiology, 1, 37-58. [ Links ]

Arp, G., Thiel, V., Reimer, A., Michaelis, W., Reitner, J., 1999, Biofilm exopolymers control microbialite formation at thermal springs discharging into alkaline Pyramid Lake, Nevada, USA: Sedimentary Geology, 126, 159-176. [ Links ]

Barrat, J.A., Boulegue, J., Tiercelin, J.J., Lesourd, M., 2000, Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa: Geochimica et Cosmochimica Acta, 64, 287-298. [ Links ]

Benjamínsson, J., 1988, Jardhiti í sjó og flaedamáli vid Ísland: Natturufraedingurinn, 58, 153-169. [ Links ]

Bischoff, L.B., Seyfried, W.E., 1978, Hydrothermal chemistry of seawater from 25° to 350°C: American Journal of Science, 278, 838-860. [ Links ]

Bischoff, J.L., Rosenbauer, R.J., 1984, The critical point and phase boundary of seawater 200-500 °C: Earth and Planetary Science Letters, 68, 172-180. [ Links ]

Bogdanov, Yu. A., Lisitzin, A.P., Binns, R.A., Gorshkov, A.I., Gurvich, E.G., Dritz, V.A., Dubinina, G.A., Bogdanova, O.Yu., Sivkov, A.V., Kuptsov, V.M., 1997, Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea: Marine Geology, 142, 99-117. [ Links ]

Bornhorst, T.J., Nurmi, P.A., Rasilainen, K., Kontas, E., 1995, Trace element characteristics of selected epithermal gold deposits of North America: Special Paper of the Geological Survey of Finland, 20, 47-52. [ Links ]

Botz, R., Winckler, G., Bayer, R., Schmidt, M., Schmitt, M., GarbeSchönberg, D., Stoffers, P., Kristjansson, J.K., 1999, Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, north Iceland: Earth and Planetary Science Letters , 171, 83-93. [ Links ]

Botz, R., Wehner, H., Schmidt, M., Worthington, T.J., Schmitt, M., Stoffers, P., Kristjansson, J.K., 2002, Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, New Zealand: Chemical Geology , 186, 235-248. [ Links ]

Bright, M., 2004, Hydrothermal vent research: http://www.univie.ac.at/marine-biology/hydrothermal/Links ]

Burgath, K.-P., von Stackelberg, U., 1995, Sulfide-impregnated volcanics and ferro-manganese incrustations from the southern Lau Basin (southwest Pacific): Marine Georesources and Geotechnology, 13, 263-308. [ Links ]

Butterfield, A., Massoth, G.J., McDuff, R.E., Lupton, J.E., Lilley, M.D., 1990, Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction: Journal of Geophysical Research, 95, 12895-12921. [ Links ]

Campbell, K.A., Rodgers, K.A., Brotheridge, J.M.A., Browne, P.R.L., 2002, An unusual modern silica-carbonate sinter from Pavlova spring, Ngatamariki, New Zealand: Sedimentology, 49, 835-854. [ Links ]

Camprubí, A., Albinson, T., 2006, Los depósitos epitermales: revisión sobre el estado actual de su conocimiento, métodos de estudio y presencia en México: Boletín de la Sociedad Geológica Mexicana, 57(4), este volumen. [ Links ]

Camprubí, A., Canet, C., Rodríguez-Díaz, A.A., Prol-Ledesma, R.M., Villanueva-Estrada, R.E., 2006, Geology, ore deposits, and hydrothermal venting in Bahía Concepción, Baja California Sur, Mexico: en preparación. [ Links ]

Canet, C., Prol-Ledesma, R.M., Melgarejo, J.-C., Reyes, A., 2003, Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates?: Marine Geology , 199, 245-261. [ Links ]

Canet, C., Prol-Ledesma, R.M., Torres-Alvarado, I., Gilg, H.A., Villanueva, R.E., Lozano-Santa Cruz, R., 2005a, Silica-carbonate stromatolites related to coastal hydrothermal venting in Bahía Concepción, Baja California Sur, Mexico: Sedimentary Geology , 174, 97-113. [ Links ]

Canet, C., Prol-Ledesma, R.M., Proenza, J., Rubio-Ramos, M. A., Forrest, M., Torres-Vera, M.A., Rodríguez-Díaz, A.A., 2005b, Mn-Ba-Hg Mineralization at shallow submarine hydrothermal vents in Bahía Concepción, Baja California Sur, Mexico: Chemical Geology , 224, 96-112. [ Links ]

Cardigos, F., Colaço, A., Dando, P.R., Ávila, S.P., Sarradin, P.-M., Tempera, F., Conceição, P., Pascoal, A., Serrão Santos, R., 2005, Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores): Chemical Geology , 224, 153-168. [ Links ]

Chao, T.T., Theobald, J.P.K., 1976, The significance of secondary iron and manganese oxides in geochemical exploration: Economic Geology, 71, 1560-1569. [ Links ]

Chen, A.C., Zhigang, Z., Fu-Wen, K., Tsanyao, F.Y., Bing-Jye, W., YuehYuan, T., 2005, Tide-influenced Acidic Hydrothermal System off Taiwan: Chemical Geology , 224, 69-81. [ Links ]

Corliss, J.B., Baross, J.A., Hoffman, S.E., 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth: Oceanologica Acta, 4, 59-69. [ Links ]

Crane, K., Hecker, B., Golubev, V., 1991, Hydrothermal vents in Lake Baikal: Nature, 350, 281. [ Links ]

Cronan, D.S., Varnavas, S.P., 1993, Submarine fumarolic and hydrothermal activity off Milos, Hellenic Volcanic Arc: Terra Abstracts Terra Nova, 5, 569. [ Links ]

Daesslé, L.W., Cronan, D.S., Marchig, V., Wiedicke, M., 2000, Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge, Lau Basin, SW Pacific: Marine Geology , 162, 479-500. [ Links ]

Dando, P.R., Leahy, Y., 1993, Hydrothermal activity off Milos, Hellenic Volcanic Arc: BRIDGE Newsletter, 5, 20-21. [ Links ]

Dando, P.R., Stüben, D., Varnavas, S.P., 1999, Hydrothermalism in the Mediterranean Sea: Progress in Oceanography, 44, 333-367. [ Links ]

Dando, P.R., Aliani, S., Arab, H., Bianchi, C.N., Brehmer, M., Cocito, S., Fowler, S.W., Gundersen, J., Hooper, L.E., Kölbl, R., Kuever, J., Linke, P., Makropoulos, K.C., Meloni, R., Miquel, J.-C., Morri, C., Müller, S., Robinson, C., Schlesner, H., Sievert, S., Stöhr, R., Stüben, D., Thomm, M., Varnavas, S. P., Ziebis, W., 2000, Hydrothermal studies in the Aegean Sea: Physics and Chemistry of the Earth (B), 25, 1-8. [ Links ]

de Ronde, C.E.J., Baker, E.T., Massoth, G.J., Lupton, J.E., Wright, I.C., Feely, R.A., Greene, R.G., 2001, Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand: Earth and Planetary Science Letters , 193, 359-369. [ Links ]

de Ronde, C.E.J., Stoffers, P., Garbe-Schönberg, D., Christenson, B.W., Jones, B., Manconi, R., Browne, P.R.L., Hissmann, K., Botz, R., Davy, B.W., Schmitt, M., Battershill, C.N., 2002, Discovery of active hydrothermal venting in Lake Taupo, New Zealand: Journal of Volcanology and Geothermal Research, 115, 257-275. [ Links ]

Degens, E., Ross, D.A., 1969, Hot brines and recent heavy metal deposits in the Red Sea: New York, New York, E.U.A., Springer-Verlag, 600 p. [ Links ]

Dymond, J., Collier, R.W., Watwood, M.E., 1989, Bacterial mats from Crater Lake, Oregon and their relationship to possible deep lake hydrothermal venting: Nature, 342, 673-675. [ Links ]

Eugster, H.P., 1969, Inorganic bedded cherts from the Magadi area, Kenya: Contributions to Mineralogy and Petrology, 22, 1-31. [ Links ]

Fan, D, Ye, J., Li, J., 1999, Geology, mineralogy, and geochemistry of the Middle Proterozoic Wafangzi ferromanganese deposit, Liaoning Province, China: Ore Geology Reviews, 15, 31-53. [ Links ]

Ferguson, J., Lambert, I.B., 1972, Volcanic exhalations and metal enrichments at Matupi Harbour, New Britain, T.P.N.G.: Economic Geology , 67, 25-37. [ Links ]

Ferrari, L., Pasquarè, G., Venegas, S., Castillo, D., Romero, F., 1994, Regional tectonics of western Mexico and its implications for the northern boundary of the Jalisco block: Geofísica Internacional, 33, 139-151. [ Links ]

Fitzsimons, M.F., Dando, P.R., Hughes, J.A., Thiermann, F., Akoumianaki, I., Pratt, S.M., 1997, Submarine hydrothermal brine seeps off Milos, Greece: Observations and geochemistry: Marine Chemistry, 57, 325-340. [ Links ]

Forrest, M.J., Melwani, A., 2003, Ecological consequences of shallowwater hydrothermal venting along the El Requesón Fault Zone, Bahía Concepción, BCS, México: Seattle, Washington, E.U.A., GSA General Meeting Abstracts with Programs, 236-10. [ Links ]

Forrest, M.J., Greene, H.G., Ledesma-Vázquez, J., Prol-Ledesma, R.M., 2003, Present-day shallow-water hydrothermal venting along the El Requesón fault zone provides possible analog for formation of Pliocene-age chert deposits in Bahía Concepción, BCS, México: Puerto Vallarta, Jalisco, México, GSA Cordilleran Section Abstracts with Programs, 35. [ Links ]

Forrest, M.J., Ledesma-Vázquez, J., Ussler, III, W., Kulongoski, J.T., Hilton, D.R., Greene, H.G., 2005, Gas geochemistry of a shallow submarine hydrothermal vent associated with El Requesón fault zone in Bahía Concepción, Baja California Sur, México: Chemical Geology , 224, 82-95. [ Links ]

Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C., Discipulo, M.K., 2000, Depositional facies and aqueoussolid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.): Journal of Sedimentary Research, 70, 565-585. [ Links ]

Fournier, R.O., Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science , 264, 685-697. [ Links ]

Fricke, H., Giere, O., Stetter, K., Alfredsson, G.A., Kristjansson, J.K., Stoffers, P., Svavarsson, J., 1989, Hydrothermal vent communities at the shallow subpolar Mid-Atlantic Ridge: Marine Biology, 102, 425-429. [ Links ]

Gamo, T., Chiba, H., Yamanaka, T., Okudaira, T., Hashimoto, J., Tsuchida, S., Ishibashi, J., Tsunogai, U., Okamura, K., Sano, Y., Shinjo, R., 2001, Chemical characteristics of newly discovered black-smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge: Earth and Planetary Science Letters , 193, 371-379. [ Links ]

Geptner, A., Kristmannsdottír, H., Kristiansson, J., Marteinsson, V., 2002, Biogenic saponite from an active submarine hot spring, Iceland: Clay and Clay Minerals, 50, 174-185. [ Links ]

Glasby, G.P., Stuben, D., Jeschke, G., Stoffers, P., Garbe-Schönberg, C.-D., 1997, A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot: Geochimica et Cosmochimica Acta , 61, 4583-4597. [ Links ]

Graham, U.M., Bluth, G.J., Ohmoto, H., 1988, Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13° N latitudes. Part I: Mineralogy and paregenesis: Canadian Mineralogist, 26, 487-504. [ Links ]

Halbach, P., Pracejus, B., Märten, A., 1993, Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan: Economic Geology , 88, 2210-2225. [ Links ]

Halbach, M., Halbach, P., Lüders, V., 2002, Sulfide-impregnated and pure silica precipitates of hydrothermal origin from Central Indian Ocean: Chemical Geology , 182, 357-375. [ Links ]

Hannington, M., Herzig, P., Stoffers, P., Scholten, J., Botz, R., GarbeSchönberg, D., Jonasson, I.R., Woest, W., Shipboard Scientific Party, 2001, First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland: Marine Geology , 177, 199-220. [ Links ]

Hashimoto, J., Miura, T., Fujikura, K., Ossaka, J., 1993, Discovery of vestimentiferan tube-worms in the euphotic zone: Zoological Science, 10, 1063-1067. [ Links ]

Haymon, R.M., Kastner, M., 1981, Hot spring deposits on the East Pacific Rise at 21o N: preliminary description of mineralogy and genesis: Earth and Planetary Science Letters , 53, 363-381. [ Links ]

Hedenquist, J.W., Izawa, E., Arribas, A., White, N.C., 1996, Epithermal gold deposits-Styles, characteristics, and exploration: Society of Resource Geology Special Publication, 1, Japan, 17 p. [ Links ]

Hein, J.R., Stamatakis, M.G., Dowling, J.S., 1999, Hydrothermal Mn-oxide deposit rich in Ba, Zn, As, Pb, and Sb, Milos Island, Greece, en Stanley, C.J., et al. (eds.), Mineral Deposits: Processes to Processing: Rotterdam, Holanda, A.A.Balkema, 519-522. [ Links ]

Hein, J.R., Stamatakis, M.G., Dowling, J.S., 2000, Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposits, Milos Island, Greece: Transactions of the Institute of Mining and the Metallurgy, Section B, Applied Earth Sciences, 109, B67-B76. [ Links ]

Herzig, P.M., 1999, Economic potential of sea-floor massive sulphide deposits: ancient and modern: Philosophical Transactions of the Royal Society of London, series A, 357, 861-875. [ Links ]

Herzig, P.M., Hannington, M.D., 1995, Polymetallic massive sulphides at the modern seafloor-a review: Ore Geology Reviews , 10, 95-115. [ Links ]

Hinman, N.W., Lindstrom, R.F., 1996, Seasonal changes in silica deposition in hot spring systems: Chemical Geology , 132, 237-246. [ Links ]

Hoaki, T., Nishijima, M., Miyashita, H., Maruyama, T., 1995, Dense community of hyperthermophilic sulfur dependent heterotrophs in geothermally heated shallow submarine biotope at KodakaraJima island, Kagoshima, Japan: Applied and Environmental Microbiology, 61, 1931-1937. [ Links ]

Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (eds.), 1995a, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions: Geophysical Monograph, 91, 466 p. [ Links ]

Humphris, S.E., Herzig, P.M., Miller, D.J., et al., 1995b, The internal structure of an active seafloor massive sulphide deposit: Nature, 377, 713-716. [ Links ]

Jach, R., Dudek, T., 2005, Evidence for hydrothermal origin of Toarcian manganese deposits from Krízna unit, Tatra Mountains, Poland: Chemical Geology , 224, 136-152. [ Links ]

Jannasch, H.W., 1984, Microbial processes at deep-sea hydrothermal vents, en Rona, P.A., Böstrom, K., Laubier, L., Smith, K.L. (eds.), Hydrothermal processes at seafloor spreading centers: New York, New York, E.U.A., Plenum Publishing, 677-709. [ Links ]

Jones, B., Renaut, R.W., 1996, Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90oC: evidence from Kenya and New Zealand: Canadian Journal of Earth Sciences, 33, 72-83. [ Links ]

Jones, B., Renaut, R.W., Rosen, M.R., 2000, Trigonal dendritic calcite crystals forming from hot spring waters at Waikite, North Island, New Zealand: Journal of Sedimentary Research , 70, 586-603. [ Links ]

Jorge, S., Melgarejo, J.-C., Alfonso, P., 1997, Asociaciones minerales en sedimentos exhalativos y sus derivados metamórficos, en Melgarejo, J.C. (ed.), Atlas de Asociaciones Minerales en Lámina Delgada: Barcelona, España, Edicions Universitat de Barcelona, 287-308. [ Links ]

Juniper, S.K., Tebo, B.M., 1995, Microbe-metal interactions and mineral deposition at hydrothermal vents, en Karl, D.M. (ed.), The Microbiology of Deep-Sea Hydrothermal Vents: Boca Raton, Florida, E.U.A., CRC Press, 219-253. [ Links ]

Kamenev, G.M., Fadeev, V.I., Selin, N.I., Tarasov, V.G., 1993, Composition and distribution of macroand meiobenthos around hydrothermal vents in the Bay of Plenty, New Zealand: New Zealand Journal Marine and Freshwater Research, 27, 407-418. [ Links ]

Kamenev, G.M., Kavun, V.Ya., Tarasov, V.G., Fadeev, V.I., 2004, Distribution of bivalve mollusks Macoma golikovi (Scarlato and Kafanov, 1988) and Macoma calcarea (Gmelin, 1791) in the shallow-water hydrothermal ecosystem of Kraternaya Bight (Yankich Island, Kuril Islands): connection with feeding type and hydrothermal activity of Ushishir Volcano: Continental Shelf Research, 24, 75-95. [ Links ]

Karl, D., Wirsen, C., Jannasch, H., 1980, Deep-sea primary production at the Galapagos hydrothermal vents: Science, 207, 1345-1347. [ Links ]

Kohn, M.J., Riciputi, L.R., Stakes, D., Orange, D.L., 1998, Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization?: American Mineralogist, 83, 1454-1468. [ Links ]

Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G., Head, I.M., 2001, Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites: Sedimentology, 48, 415-433. [ Links ]

Kostoglodov, V., Bandy, W.L., 1995, Seismotectonic constraints on the convergence rate between the Rivera and North American plates: Journal of Geophysical Research , 100, 17977-17989. [ Links ]

Ledesma-Vázquez, J., Berry, R.W., Johnson, M.E., Gutiérrez-Sánchez, S., 1997, El Mono chert: a shallow-water chert from the Pliocene Infierno Formation, Baja California Sur, Mexico: Geological Society of America Special Paper, 318, 73-81. [ Links ]

Ledesma-Vázquez, J., Johnson, M.E., 2001, Miocene-Pleistocene tectonosedimentary evolution of Bahía Concepción region, Baja California Sur (Mexico): Sedimentary Geology , 144, 83-96. [ Links ]

Liakopoulos, A., Glasby, G.P., Papavassiliou, C.T., Boulegue, J., 2001, Nature and origin of the Vani manganese deposit, Milos, Greece: an overview: Ore Geology Reviews , 18, 181-209. [ Links ]

Lüders, V., Pracejus, B., Halbach, P., 2001, Fluid inclusions and sulfur isotope studies in probable modern analogue Kuroko-type ores from the Jade hydrothermal field (Central Okinawa Trough, Japan): Chemical Geology , 173, 45-58. [ Links ]

Macdonald, K.C., Becker, K., Spiess, F.N., Ballard, R.D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise: Earth and Planetary Science Letters , 48, 1-7. [ Links ]

Marchig, V., Stackelberg, U., Wiedicke, M., Durn, G., Milovanovic, D., 1999, Hydrothermal activity associated with off-axis volcanism in the Peru Basin: Marine Geology , 159, 179-203. [ Links ]

Martínez-Frías, J., 1998, An ancient Ba-Sb-Ag-Fe-Hg-bearing hydrothermal system in SE Spain: Episodes, 21, 248-251. [ Links ]

Michard, A., 1989, Rare earth element systematics in hydrothermal fluids: Geochimica et Cosmochimica Acta , 53, 745-750. [ Links ]

Michard, A., Albarède, F., 1986, The REE content of some hydrothermal fluids: Chemical Geology , 55, 51-60. [ Links ]

Mills, R.A., Wells, D., Roberts, S., 2001, Genesis of ferromanganese crusts from the TAG hydrothermal field: Chemical Geology , 176, 3-293. [ Links ]

Missack, E., Stoffers, P., El Goresy, A., 1989, Mineralogy, parageneses, and phase relations of copper-iron sulfides in the Atlantis II Deep, Red Sea: Mineralium Deposita, 24, 82-91. [ Links ]

Mita, N., Maruyama, A., Usui, A., Higashihara, T., Hariya, Y., 1994, A growing deposit of hydrous manganese oxide produced by microbial mediation at a hot spring, Japan: Geochemical Journal, 28, 71-80. [ Links ]

Morri, C., Bianchi, C.N., Cocito, S., Peirano, A., De Biasi, A.M., Aliani, S., Pansini, M., Boyer, M., Ferdeghini, F., Pestarino, M., Dando, P., 1999, Biodiversity of marine sessile epifauna at an Aegean island subject to hydrothermal activity: Milos, Eastern Mediterranean Sea: Marine Biology, 135, 729-739. [ Links ]

Mountain, B.W., Benning, L.G., Boerema, J.A., 2003, Experimental studies on New Zealand hot spring sinters: rates of growth and textural development: Canadian Journal of Earth Sciences , 40, 1643-1667. [ Links ]

Moyer, C.L., Tiedje, J.M., Dobbs, F.C., Kart, D.M., 1998, Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep Sea Research Part II: Topical Studies in Oceanography, 45, 303-317. [ Links ]

Naden, J., Kilias, S.P., Darbyshire, D.P.F., 2005, Active geothermal systems with entrained seawater as modern analogs for transitional volcanichosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island, Greece: Geology, 33, 541-544. [ Links ]

Nicholson, K., 1992, Contrasting mineralogical-geochemical signatures of manganese oxides: guides to metallogenesis: Economic Geology , 87, 1253-1264. [ Links ]

Ohmoto, H., Rye, R.O., 1979, Isotopes of sulfur and carbon, en Barnes, H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd ed.: New York, New York, E.U.A., John Wiley & Sons, 509-567. [ Links ]

Ortega-Osorio, A., Prol-Ledesma, R. M., Melgarejo, J.-C., Reyes, A., Rubio-Ramos, M.A., Torres-Vera, M.A., 2001, Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico: AGU 2001 Fall Meeting, San Francisco, California, E.U.A. [ Links ]

Parson, L.M., Walker, C.L., Dixon, D.R. (eds.), 1995, Hydrothermal vents and processes: Geological Society Special Publication, 87, 411 p. [ Links ]

Pichler, T., Veizer, J., 1999, Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea: Chemical Geology , 162, 15-31. [ Links ]

Pichler T., Veizer J., Hall, G.E.M., 1999a, The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater: Marine Chemistry , 64, 229-252. [ Links ]

Pichler, T., Giggenbach, W.F., McInnes, B.I.A., Buhl, D., and Duck, B., 1999b, Fe sulfide formation due to seawater-gas-sediment interaction in a shallow water hydrothermal system at Lihir Island, Papua New Guinea: Economic Geology , 94, 281-287. [ Links ]

Prol-Ledesma, R.M., 2003, Similarities in the chemistry of shallow submarine hydrothermal vents: Geothermics, 32, 639-644. [ Links ]

Prol-Ledesma, R.M., Juárez, G., 1986, Geothermal map of Mexico: Journal of Volcanology and Geothermal Research , 28, 351-362. [ Links ]

Prol-Ledesma, R. M., Canet, C., Melgarejo, J.C., Tolson, G., RubioRamos, M.A., Cruz-Ocampo, J.C., Ortega-Osorio, A., Torres-Vera, M.A., Reyes, A., 2002a, Cinnabar deposition in submarine coastal hydrothermal vents, Pacific Margin of central Mexico: Economic Geology , 97, 1331-1340. [ Links ]

Prol-Ledesma, R.M., Canet, C., Armienta, M.A., Solís, G., 2002b, Vent fluid in the Punta Mita coastal submarine hydrothermal system, Mexico: Denver, Colorado, E.U.A., GSA Annual Meeting, Abstracts with Programs, 153. [ Links ]

Prol-Ledesma, R. M., Canet, C., Tolson, G., García-Palomo, A., Miller, R., Rubio-Ramos, M.A., Torres-de León, R., and HuicocheaAlejo, J.S., 2003, Basaltic volcanism and submarine hydrothermal activity in Punta Mita, Nayarit, Mexico, en Geologic transects across Cordilleran Mexico, Guidebook for the field trips of the 99th Geological Society of America Cordilleran Section Annual Meeting, Puerto Vallarta, Jalisco, Mexico, March 30-31, 2003: Mexico, D.F., Universidad Nacional Autónoma de México, Instituto de Geología, Publicación Especial, 1, 169-182. [ Links ]

Prol-Ledesma, R. M., Canet, C., Torres-Vera, M.A., Forrest, M.J., Armienta, M.A., 2004, Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico: Journal of Volcanology and Geothermal Research , 137, 311-328. [ Links ]

Prol-Ledesma, R.M., Dando, P.R., de Ronde, C.E.J., 2005, Special Issue on “Shallow-water Hydrothermal Venting”: Chemical Geology , 224, 1-4. [ Links ]

Puteanus, D., Glasby, G.P., Stoffers, P., Kunzendorf, H., 1991, Hydrothermal iron-rich deposits from the Teahitia-Mehetia and Macdonald Hot Spot areas, S.W. Pacific: Marine Geology , 98, 389-409. [ Links ]

Renaut, R.W., Jones, B., Tiercelin, J.J. and Tarits, C., 2002, Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Baringo, central Kenya Rift Valley: Sedimentary Geology , 148, 235-257. [ Links ]

Rodgers, K.A., Browne, P.R.L., Buddle, T.F., Cook, K.L., Greatrex, R.A., Hampton, W.A., Herdianita, N.R., Holland, G.R., Lynne, B.Y., Martin, R., Newton, Z., Pastars, D., Sannazarro, K.L., Teece, C.I.A., 2004, Silica phases in sinters and residues from geothermal fields of New Zealand: Earth-Science Reviews, 66, 1-61. [ Links ]

Rodríguez-Díaz, A.A., 2004, Caracterización geológica y geoquímica del área mineralizada de manganeso en Bahía Concepción, Baja California: México, D.F., Facultad de Ingeniería, Universidad Nacional Autónoma de México, Tesis de licenciatura, 82 p. [ Links ]

Rona, P.A., 1988, Hydrothermal mineralization at oceanic ridges: Canadian Mineralogist , 26, 431-465. [ Links ]

Rooney, M.A., Claypool, G.E., Chung, H.M., 1995, Modelling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons: Chemical Geology , 126, 219-232. [ Links ]

Rusch, A., Walpersdorf, E., deBeer, D., Gurrieri, S., Amend, J.P., 2005, Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy: Chemical Geology , 224, 169-182. [ Links ]

Russell, M.J., 1995, The generation at hot springs of sedimentary ore deposits, microbialites and life: Ore Geology Reviews , 10, 199-214. [ Links ]

Sarano, P., Murphy, R. C., Houghton, B. F., Hedenquist, J. W., 1989, Preliminary observations of submarine geothermal activity in the vicinity of White Island volcano, Taupo Volcanic zone, New Zealand: Journal of the Royal Society of the New Zealand, 19, 449-459. [ Links ]

Savelli, C., Marani, M., Gamberi, F., 1999, Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc Tyrrhenian Sea: Journal of Volcanology and Geothermal Research , 88, 305-323. [ Links ]

Sawkins, F.J., 1990, Metal deposits in relation to plate tectonics: Berlin- Heidelberg, Alemania, Springer-Verlag, 461 p. [ Links ]

Schwarz-Schampera, U., Herzig, P.M., Hannington, M.D., Stoffers, P., 2001, Shallow submarine epithermal-style As-Sb-Hg-Au mineralisation in the active Kermadec Arc, New Zealand, en Pietrzynski, A., et al. (eds.), Mineral deposits at the beginning of the 21st century: Lisse, Holanda, Swets & Zeitlinger Publishers, 333-335. [ Links ]

Scott, S.D., 1977, Submarine hydrothermal systems and deposits, en Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits: New York, New York, E.U.A., John Wiley & Sons , 797-935. [ Links ]

Sedwick, P., Stuben, D., 1996, Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy: Marine Chemistry , 53, 147-161. [ Links ]

Stein, J.L., 1984, Subtidal gastropods consume sulphur-oxidizing bacteria: Evidence from coastal hydrothermal vents: Science, 223, 696-698. [ Links ]

Stetter, K.O., Fiala, G., Huber, G., Huber, R., Segerer, A., 1990, Hyperthermophilic microorganisms: FEMS Microbiology Reviews, 75, 117-124. [ Links ]

Stoffers, P., Hannington, M., Wright, I., Herzig, P., De Ronde, C., the Shipboard Scientific Party, 1999, Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand: Geology, 27, 931-934. [ Links ]

Tarasov, V.G., (ed.), 1991, Shallow-water vents and ecosystem of the Kraternaya Bight (Ushishir Volcano, Kuriles), Vol 1, Functional Parameters, Part 2: Vladivostok, Rusia, DVO RAN Press, 20-25 (en ruso). [ Links ]

Tarasov, V.G., 2002, Environment and biota of shallow-water hydrothermal vents of the west Pacific, en Gebruk, A.V. (ed.), Biology of Hydrothermal Systems: Moscú, Rusia, KMK Press, 264-319 (en ruso). [ Links ]

Tarasov, V.G., Propp, M.V., Propp, L.N., Kamenev, G.M., Blinov, S.V., 1985, Hydrothermal Venting and Specific Water Ecosystem in Kraternaya Caldera (Kuriles): Vladivostok, Rusia, DVNTc AN USSR Press, 30 p. (en ruso). [ Links ]

Tarasov, V.G., Propp, M.V., Propp, L.N., Zhirmunsky, A.V., Namsaraev, B.B., Gorlenko, V.M., Starynin, D.A., 1990, Shallow-water gasohydrothermal vents of Ushishir Volcano and the ecosystem of Kraternaya Bight (The Kurile Islands): Marine Ecology, 11, 1-23. [ Links ]

Tarasov, V.G., Kondrashev, S.V., Lastivka, T.V. 1991, Oxygen metabolism of the diatom and bacterial mats of Kraternaya Bight, en Tarasov V.G., (ed.), Shallow-water Vents and Ecosystem of the Kraternaya Bight (Ushishir Volcano, Kuriles), Vol 1, Functional Parameters, Part 2: Vladivostok, Rusia, DVO RAN Press , 4-19 (en ruso). [ Links ]

Tarasov, V.G., Sorokin, Yu.I., Propp, M.V., Shulkin, V.M., Namsaraev, B.B., Starynin, D.A., Kamenev, G.M., Fadeev, V.I., Malakhov, V.V., Kosmynin, V.N., 1993, Specifics of structural and functional characteristics of marine ecosystem in zones of shallow-water venting in the West Pacific: Izvestiya RAN, Seriya biologicheskaya (Biology Series), 6, 914-926 (en ruso). [ Links ]

Tarasov, V.G., Gebruk, A.V., Shulkin, V.M., Kamenev, G.M., Fadeev, V.I., Kosmynin, V.N., Malakhov, V.V., Starynin, D.A., Obzhirov, A.I., 1999, Effect of shallow-water hydrothermal venting on the biota of Matupi Harbor (Rabaul Caldera, New Britain Island, Papua-New Guinea): Continental Shelf Research , 19, 79-116. [ Links ]

Tarasov, V.G., Gebruk, A.V., Mironov, A.N., Moskalev, L.I., 2005, Deepsea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology , 224, 5-39. [ Links ]

Tritlla, J., Cardellach, E., 1997, Fluid inclusions in pre-ore minerals from the carbonate-hosted mercury deposits in the Espadan Ranges (eastern Spain): Chemical Geology , 137, 91-106. [ Links ]

Vidal, V.M.V., Vidal, F.V., Isaacs, J.D., 1978, Coastal submarine hydrothermal activity off northern Baja California: Journal of Geophysical Research , 83-B, 1757-1774. [ Links ]

Vidal, V.M.V., Vidal, F.V., Isaacs, J.D., 1981, Coastal submarine hydrothermal activity off northern Baja California 2. Evolutionary history and isotope chemistry: Journal of Geophysical Research , 86-B, 9451-9468. [ Links ]

Villanueva-Estrada, R.E., Prol-Ledesma, R.M., Torres-Alvarado, I., Canet, C., 2005, Geochemical Modeling of a Shallow Submarine Hydrothermal System at Bahía Concepción, Baja California Sur, México: Antalya, Turkey, Proceedings World Geothermal Congress, Paper 0892, 5 p. [ Links ]

Villanueva, R.E., Prol-Ledesma, R.M., Torres-Vera, M.A., Canet, C., Armienta M.A., de Ronde, C.E.J., 2006, Comparative study of sampling methods and in situ and laboratory analysis for shallowwater submarine hydrothermal systems: Journal of Geochemical Exploration (aceptado). [ Links ]

Von Damm, K.L., Edmond, J.M., Measures, C.I., Grant. B., 1985, Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California: Geochimica et Cosmochimica Acta , 49, 2221-2237. [ Links ]

Walter, M.R., Bauld, J., Brock, T.D., 1976, Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park, en Walter, M.R. (ed.), Stromatolites: New York, New York, E.U.A., Elsevier, 273-310. [ Links ]

Walter, M.R., Des Marais, D.J., 1993, Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars: Icarus, 101, 129-143. [ Links ]

Recibido: 20 de Octubre de 2005; Revisado: 11 de Enero de 2005; Aprobado: 01 de Diciembre de 2005

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons