SciELO - Scientific Electronic Library Online

 
vol.51 número7Análisis de la estabilidad del volumen del pan de trigos harineros (Triticum aestivum L.) mexicanos de secanoEfecto del ácido salicílico en el crecimiento, estatus nutrimental y rendimiento en maíz (Zea mays) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.51 no.7 Texcoco oct./nov. 2017

 

Wildlife

Foraging and nesting substrates of the escamolera ant (Liometopum apiculatum Mayr, Himenoptera: Formicidae) in Villa González Ortega, Zacatecas, México

Javier Rafael-Valdez1 

Luis A. Tarango-Arambula2  * 

Saúl Ugalde-Lezama1 

Eloy A. Lozano-Cavazos3 

Víctor M. Ruíz-Vera2 

Ángel Bravo-Vinaja2 

1Departamento de Suelos, Universidad Autónoma Chapingo. 56230. km 38.5 Carretera México-Texcoco, Chapingo, Estado de México. (xavi_r_valdez@hotmail.com) (saulu@colpos.mx).

2Campus San Luis Potosí, Colegio de Postgraduados. 78600. Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí. (vmanuel@colpos.mx) (abravo@colpos.mx).

3Departamento de Recursos Naturales Renovables, Universidad Autónoma Agraria Antonio Narro. 25315. Saltillo, Coahuila, México. (alejandrolzn@yahoo.com).


Abstract

The escamolera ant (Liometopum apiculatum Mayr) (Hymenoptera: Formicidae) has an ecological and socioeconomic importance for the state of Zacatecas, Mexico. There are not enough studies of this species and of its foraging activity. The objectives of this study were to determine the relationship between the distance and the number of trails with the forage substrate of L. apiculatum and to identify the forage and nesting substrates, and its foraging effort. The hypotheses were: 1) there is not direct relationship between the distance and the number of trails with the forage substrate of the escamolera ant; and 2) the use of substrates is homogeneous. From June to August 2014, we carried out a daily sampling (90 d), through field surveys from 7:00 h to 14:00 h within the habitat of the escamolera ant. The following analyses were carried out: linear regression (LR), observation frequency rate (OF), stepwise logistic regression (LR), main components (PCA), stepwise Poisson regression (PRA), simple correspondence (SCA), and Kruskal-Wallis analysis. The substrates in which the ant foraged were Yucca spp. (63.8 %), Agave salmiana (21.6 %), and Opuntia rastrera (14.7%). The ant nested (n=31) under A. salmiana (45.2 %), Yucca spp. (38.7 %), O. rastrera (12.9 %), and Dalea bicolor (3.2 %). The correlation between linear and foraging distances (R2=0.80) was significant. Ants travelled longer distances (greater foraging effort) to forage on palm trees. The ants assigned less foraging effort when their colonies had more trails. The probability of finding colonies with three or four trails was higher than finding colonies with two, five, and six trails (p≤0.05). This information can support the management and conservation of the habitat of the escamolera ant in central Mexico.

Key words: insect; habitat; arid zone; foraging distance; conservation

Resumen

En Zacatecas, México, la hormiga escamolera (Liometopum apiculatum Mayr) (Himenoptera: Formicidae) es importante ecológica y socioeconómicamente. Esta especie y su actividad forrajera se han estudiado poco. Los objetivos de este estudio fueron determinar la relación entre la distancia y el número de caminos con el sustrato forrajero de L. apiculatum e identificar el sustrato forrajero, de anidación y su esfuerzo de forrajeo. Las hipótesis fueron: 1) no hay relación directa entre la distancia y el número de caminos con el sustrato forrajero de la hormiga escamolera y 2) el uso de los sustratos es homogéneo. De junio a agosto de 2014 se realizó un muestreo diario (90 d) con recorridos de campo de 7:00 a 14:00 h en el hábitat de la hormiga. Con los datos se realizaron regresión lineal (RL), índices de frecuencia de observación (Fo), regresión logística por pasos (stepwise; RL), componentes principales (ACP), regresión de Poisson por pasos (stepwise; ARP), correspondencia simple (ACS) y análisis de Kruskall-Wallis. Los sustratos en los que la hormiga forrajeó fueron Yucca spp. (63.8 %), Agave salmiana (21.6 %) y Opuntia rastrera (14.7 %); la hormiga anidó (n=31) debajo de A. salmiana (45.2 %), Yucca spp. (38.7 %), O. rastrera (12.9 %) y Dalea bicolor (3.2 %). La correlación entre la distancia recta y la distancia de forrajeo (R2=0.80) fue significativa. La hormiga recorrió distancias mayores (mayor esfuerzo de forrajeo) para forrajear en palmas. El esfuerzo de forrajeo de la hormiga fue menor en las colonias con número mayor de caminos. La probabilidad de encontrar colonias con tres y cuatro caminos fue mayor a la de encontrar colonias con dos, cinco y seis caminos (p≤0.05). Esta información puede apoyar el manejo y la conservación del hábitat de la hormiga escamolera en el centro de México.

Palabras clave: insecto; hábitat; zonas áridas; distancia de forrajeo; conservación

Introduction

Natural resources are a fundamental part of the economic development of a nation and represent a potential progress, if they are managed in a sustainable manner. The arid and semi-arid zones of Mexico provide resources which result in long-term economic benefits to rural communities (De Luna et al., 2013; Dinwiddie et al., 2013; Cruz et al., 2014; Lara et al., 2015).

Insect harvesting is an ancient practice that is still conducted in certain regions of Mexico. Some insects are used in the gastronomy industry, and are currently considered as gourmet food (Ramos et al., 2006; Miranda et al., 2011). Edible insects -like escamoles (Liometopum apiculatum Mayr), white agave worms (Acentrocneme hesperiaris W.) and red agave worms (Comadia redtenbacheri Hamm)- generate continuous employment for rural communities of the arid ecosystems of Zacatecas, Mexico. In the municipalities of Villa González Ortega, and in Pinos, Zacatecas, the harvest of edible insects can be a better alternative income than cattle raising and rainfed agriculture. It also offers employment options to the inhabitants, when no other productive options are available (De Luna et al., 2013). The escamolera ant (L. apiculatum) occurs in 15 Mexican states, including: Estado de Mexico, Hidalgo, San Luis Potosí, Tlaxcala, and Zacatecas (Del Toro et al., 2009); its distribution and abundance are limited by temperature and relative humidity (Cerdá, 1998; Cruz et al., 2014).

The colonies of the escamolera ant commonly have one to six foraging trails; their length varie according to the habitat conditions and none of them crosses each other (Ramos et al., 1988; Lara et al., 2015). Foraging is carried out between 7:00 h and 19:00 h., from March to September, in up to 580 m2 per colony (Ramos and Levieux, 1992). In this activity participates only 10 percent of the colony approximately (Dornhaus and Powell, 2010).

The larvae of L. apiculatum Mayr are considered food in the states of Chihuahua, Durango, Michoacán, Colima, Hidalgo, Mexico, and Puebla, as well as in Mexico City (Ramos et al., 1988; Cruz et al., 2014; Lara et al., 2015). In the San Luis Potosí-Zacatecas High Plateau, L. apiculatum represents an important economic resource during the drier months (March and April), when the reproductive breed is harvested in its larval stage (escamoles). The price of escamoles in the region varies from $150.00 MXN ($7.5 USD) to $550.00 MXN ($27.5 USD), with an average price of $250.00 MXN ($12.5 USD) per kilogram (De Luna et al., 2013; Dinwiddie et al., 2013; Lara et al., 2015). In the Teotihuacán zone, Estado de Mexico, escamoles are sold per liter (approximately 800 g), at $750.00 MXN ($37.5 USD), (Miranda et al., 2011).

Frequent land use changes and recurrent droughts have caused the loss and fragmentation of the habitat of this species. There is also mismanagement and lack of legislation regarding the escamolera ant (Tarango, 2012). In the semi-arid ecosystems of central Mexico, L. apiculatum has been overexploited. As a result, their colonies have been destroyed and their population have declined (Ramos et al., 2006; Tarango, 2012; Dinwiddie et al., 2013).

Despite the economic importance of insects in desert ecosystems (Hithford et al., 2008), and the extensive distribution of L. apiculatum and the economic importance of its larvae, there is not enough research on this species. Therefore, there is a need to study its habitat (Rojas, 2001; Tarango, 2012; Dinwiddie et al., 2013; Cruz et al., 2014). The information from this study is important for the sustainable management of the colonies of the escamolera ant and their habitat, in a frequent land use change context, which has caused the opening of the ant habitat for agricultural activities.

The objectives of this study were to determine the relationship between the distance and the number of trails with the foraging substrate of L. apiculatum, and to identify the forage and nesting substrates, and their foraging effort. The hypotheses were: 1) there is not direct relationship between the distance and the number of trails with the forage substrate of the escamolera ant; and 2) the use of substrates is homogeneous.

Materials and Methods

The study was carried out from June to August 2014, at Villa Gonzalez Ortega municipality, Zacatecas, in the southern region of the Chihuahuan desert (Giménez and González, 2011), located at 22° 25’ and 22° 40’ N, 101° 48’ and 102° 06’ W, at a height of 2000 to 2400 m. The territory has an area of 411.8 km2 and includes 11 894 inhabitants (author unknown, 2010; INEGI, 2010). The climate of Villa Gonzalez Ortega is temperate and semi-dry (BS0kw’) and temperate and dry (BS1kw), with temperatures ranging from 14 to 18 °C (García, 2004). Rainfall is higher in August (300-500 mm per year). The most abundant vegetation consists of microphyllus scrublands and grasslands (Rzedowski, 1978).

Field visits were conducted every day, from 7:00 h to 14:00 h., and samples were taken from colonies of the escamolera ant and from its foraging trails. With the support of an escamol harvester guide, we were able to locate the nest through the identification of the foraging trails of the colony and their intersection, where the ant nest is commonly located (Miranda et al., 2011). The nest was verified by introducing a steel rod into the nest, which was then impregnated with the characteristic scent (similar to fermented butter) of an ant nest. The vegetable substrateused by L. apiculatum to build its nest was recorded and the foraging trails of the colonies were counted. Starting from the first colony, the rest (n=31) were selected taking into consideration their proximity to the first nest, but without considering their cardinal direction, and their foraging trails (n=116) were recorded. The number of trails indicates the number of plants that the ant forages. Once the forage substrate associated to each trail was identified, a circular plot (20 m wide) was established around it, and the arboreal plants and shrubs were counted within it (Schreuder et al., 1993). The nests, the foraging trails, and plots covered 73.82 ha of the sampling area. This represented 27.58 % of the area under study in Villa Gonzalez Ortega municipality, Zacatecas.

The relative frequency of plant species -palm tree (Yucca spp.), prickly pear cactus (Opuntia rastrera), agave (Agave salmiana), catclaw mimosa (Mimosa Biuncifera), silver prairie clover (Dalea bicolor), creosote bush (Larrea tridentata), mesquite (Prosopis spp.), huizache (Acacia farnesiana)- was calculated using the following equivalence:

The foraging preferences were identified using the following formula:

The nesting preferences were identified according to:

The frequencies of observation were calculated using Microsoft Excel® (Microsoft Office, 2013).

The linear distance (m) of trails from the nest to the forage substrate was determined with a laser rangefinder (Bushnell, Pro 1600 Slope edition Kansas, USA). A rope and a measuring tape (20 m) were used to measure the actual curvilinear distance that L. apiculatum travelled from its nests to the substrates. Finally, the level of association between these distances was identified using a linear regression analysis (Microsoft Excel®; Microsoft Office, 2013).

Descriptive analyses (descriptive statistics tables and frequency tables) were used to determine the relationship between distance and number of trails with forage substrates and identification of: 1) forage substrates in the sampling plots; 2) foraging effort (curvilinear foraging distance/linear distance); 3) number of trails per colony; 4) linear distance from the nest to the forage substrate; and 5) curvilinear foraging distance. These analyses were carried out using the Microsoft Excel® software (Microsoft Office, 2013).

The probability of occurrence of arboreal plants and shrubs within the plots was determined using a simple regression analysis, taking into consideration the distances (linear distance from the colony to the forage substrate and curvilinear distance to the forage substrate) as dependent variables and the abundance of arboreal plants and shrubs as an independent variable; xi was the number of trails per colony of escamolera ant. In this analysis, trail frequency was categorized as follows: few trails (two), regular number of trails (three and four) and many trails (five and six). The analysis was carried out using the GLM procedure of the R software, version 3.2.0 (Maindonald, 2004; R core team, 2013).

The probability of occurrence of number of trails in ant colonies was determined using a simple linear regression analysis (Truett et al., 1967). The dependent variable was the abundance of each arboreal and shrub plant species; while the independent variable was the number of trails per colony. The model structure was adjusted with the stepwise proceeding, minimum Akaike classification criterion (AIC; Akaike, 1969) with statistically significant coefficients (p≤0.05), using the GLM procedure of the R software, version 3.2.0 (Maindonald, 2004; R core team, 2013).

The relationship between the number of trails of each colony and the presence of arboreal plants and shrubs was determined using a principal components analysis (ACP; Hotelling, 1993) using the GLM procedure of the R software, version 3.2.0 (Maindonald, 2004; R core team, 2013).

The association of the independent variables (forage substrates: palm tree, agave, and prickly pear cactus) with dependent variables (presence of L. apiculatum) was identified through Poisson regression (p<0.05) (McCullagh and Nelder, 1989; González, 2003), using the GLM procedure of the R software, version 3.2.0 (R core team, 2013).

The differences on the use of forage substrates by the escamolera ant, or the frequency of its use, was determined using the nonparametric Kruskal-Wallis test (Zar, 1999). The information of the presence of the ant per substrate was organized in three categories: substrate 1 (palm tree), substrate 2 (prickly pear cactus), and substrate 3 (agave), using the JMP IN software, version 12.1.0 (Academic SAS Institute Inc., 2015).

The graphic associations of the presence of the escamolera ant -along with the most used forage substrates- were generated through a simple correspondence analysis (p≤0.05) (ACS; Cornejo, 1988), using the XLSTAT software, version 2015.1.01 (XLSTAT, 2015). To do that, the information on the presence of L. apiculatum per substrate was categorized as: low presence (prickly pear cactus forage substrate), medium presence (maguey forage substrate) and high presence (palm tree forage substrate).

Results and Discussion

In this study, samples were taken from 31 nests of the escamolera ant (Figure 1) in colonies with a total of 116 foraging trails (Ẋ=3.7 trails per colony). The presence and foraging activities of the escamolera ant depend on the weather (temperature and relative humidity), vegetation type, soil and its cover, anthropogenic disturbances and on the level of association of the ant with some plants. In the case of the cresote bush (L. tridentata), there is a low association level (Cruz et al., 2014; Lara et al., 2015), although it is very common in the habitat of the escamolera ant in central Mexico.

Figure 1 Study area and location of nests of the escamolera ant (Liometopum apiculatum Mayr) under study in Villa Gonzalez Ortega, Zacatecas, Mexico. 

The average curvilinear and linear foraging distance travelled by L. apiculatum was 38.6 m (+/-17.18 m) and 24.3 m (+/-11.36 m), respectively. The average forage effort was 1.6 (+/-0.32). The most frequent plants in the 116 circular plots were O. rastrera, D. bicolor, M. biuncifera, and A. salmiana (Table 1).

Table 1 Plant density and frequency of observation in 116 plots evaluated in Villa Gonzalez Ortega, Zacatecas, Mexico. 

The number of plants with presence of foraging activity by L. apiculatum were Yucca spp. with 20.3 plants per hectare (63.8 %), A. salmiana with 6.9 plants (21.6 %), and O. rastrera with 4.7 plants per hectare (14.7 %). Meanwhile, the curvilinear foraging distance increased with the linear distance from the nest to the forage substrate (R2=0.80; Figure 2).

Figure 2 Relationship between linear and foraging distance in areas of foraging activity of Liometopum apiculatum Mayr in Villa Gonzalez Ortega, Zacatecas, Mexico. 

In very hot and dry environments -such as the arid and semi-arid zones of Mexico-, environmental and soil surface temperatures influence the foraging activity and the ant foraging distances. High temperatures can dehydrate and kill ants and even lead to the disappearance of the colony (Cerdá, 1988; Lara et al., 2015). L. apiculatum workers are active 24 hours a day, but they seek food during daytime (Ramos et al., 1988). Additionally, ants establish underground foraging paths, under dead leaves and herbs that cover the soil surface; meanwhile, in rocky terrains, they move through the cracks (Lara et al., 2015). In our study, the distance to forage on Yucca spp. was the longest (Table 2). This indicates that the paths and distances that ants travel depend on the forage substrate (Fourcassie and Traniello, 1993).

Table 2 Relationship among forage substrate, distances, and foraging efforts by Liometopum apiculatum Mayr, in Villa Gonzalez Ortega, Zacatecas, Mexico. 

Foraging distance decreased inversely to the number of trails (Table 3). Miranda et al. (2011) reported a maximum of four foraging trails and Ramos et al. (1988) recorded three to five trails whose width and length were directly related to the age of the colony of L. apiculatum.

Table 3 Number and distance of trails per colony of L. apiculatum Mayr, in Villa Gonzalez Ortega, Zacatecas, Mexico. 

Liometopum apiculatum prefers to nest in A. salmiana and Yucca spp. (Figure 3). Cruz et al. (2014) also recorded that A. salmiana was a main nesting substrate. Likewise, Lara et al. (2015) pointed out that L. apiculatum usually builds its nests under A. salmiana, palm tree (Yucca filifera), red biznaga (Cylindropuntia tunicata), and thistle chollas (C. tunicata), in the San Luis Potosí-Zacatecas High Plateau.

Liometopum apiculatum uses other substrates for nesting, such as shrublands, grasslands, dead trunks, rocks, and stems of decomposing Yucca spp. (Miller, 2007; Esparza et al., 2008). In our study, colonies with three to five trails were more frequent for foraging activities (Table 4).

Figure 3 Frequency of observation of nests of the escamolera ant (Liometopum apiculatum Mayr) in nesting substrates, in Villa Gonzalez Ortega, Zacatecas, Mexico. 

Table 4 Results of the logistic regression analysis for the number of trails of colonies of Liometopum apiculatum Mayr in Villa Gonzalez Ortega, Zacatecas, México. 

Foraging distance was the variable that most accurately predicted the number of trails per colony (AIC=147.05; p=0.0644). In other studies, L. apiculatum searched for food in areas ranging from 361.5 to 580 m2 and that the longest distance that ants travelled to find food had approximately a radius of 100 m (Mackay and Mackay, 2002; Lara et al., 2015). The first three PCA axes accounted for 98.08 % of the variance (Table 5) and identified the foraging distance, the linear distance, and the forage substrates as the most important variables that indicate the presence of the escamolera ant in the study area.

Liometopum apiculatum is omnivorous, although it prefers liquid food, such as extrafloral nectars from plants and honeydew from some insects (Miller, 2007). Poisson regression analysis identified (AIC=3191.4) a significative association of the ant with palm trees, agaves and prickly pear cacti (Table 6). Therefore, the spatial distribution of L. apiculatum was correlated with the location of bushes and trees infested by scale insects of the Order hemiptera (Ramos and Levieux, 1992), since the escamolera ant feeds via trophobiosis from the honeydew of these insects, as well as from insect pupae, crustaceans,annelids, molluscs, dead vertebrates, animal excreta, and nectar from Opuntia spp. flowers (Velasco et al., 2007).

Table 5 Typical values of the main components (PCA) with eleven variables related to the sites of the escamolera ants (Liometopum apiculatum Mayr), in Villa Gonzalez Ortega, Zacatecas, Mexico. 

Table 6 Poisson regression results for the presence of Liometopum apiculatum Mayr per forage substrate, in Villa Gonzalez Ortega, Zacatecas, Mexico. 

Some ant species have selective habits during their foraging process (Cortes and León, 2003). In Mexico, L. apiculatum follows this pattern and associates with xeric shrubland habitat (Esparza et al., 2008; Cruz et al., 2014). The association observed between ants and forage substrates -palm trees, agaves, and prickly pear cacti- is connected with food, but also with protection against predators and high temperatures (Miller, 2007). A mutualistic relationship occurs between the escamolera ant and O. imbricata, both species obtain a benefit, the former obtains food from the latter (inflorescence nectar) and the latter is protected from herbivores and seed predators, because the former is aggressive and emits an unpleasant odor (Mackay and Mackay, 2002).

Forage substrates (palm tree and agave) nearby the colonies were infested with scale insects (Hemiptera). These insects insert their piercing-sucking mouthparts into the plants (Yucca spp., A. salimana, and Opuntia spp.); the escamolera ant touches this structure with their antennas, stimulating them to eject their honeydew (Gullan and Kosztarab, 1997; Delfino and Buffa, 2000; Lara et al., 2015), of which they feed. On this matter, Cruz et al. (2014) and Lara et al. (2015) reported the infestation of A. salmiana with the pseudococcidae Dysmicoccus brevipes and Coccoidea fallen and the relationship of ants with the prickly pear cacti, which likely allows them to use its flower compounds as food and the plant as thermal protection. In addition to palm trees, agaves, and prickly pear cacti for foraging, other bushy plants have a strategic ecological arrangement that protects ants during their foraging activity (Ramos and Levieux, 1992). Vegetation structure and soil cover have an effect on the requirements of the ant, areas with more vegetation cover offer greater availability of food and create favorable conditions for the development of humus over the soil, which, in turn, generates a microclimate that protects the ants (Ramos et al., 1988; Lara et al., 2015).

Simple correspondence analysis showed an association between foraged substrates and L. apiculatum; additionally, this analysis showed the presence of ants in three sets (Figure 4). However, the Kruskal-Wallis analysis (H=2.00; p=0.3679) proved that there were no significant differences with their presence in the three forage substrates.

Figure 4 2D simple correspondence representation between the presence of the escamolera ant (Liometopum apiculatum Mayr) and forage substrates, in Villa Gonzalez Ortega, Zacatecas, México. 

Liometopum apiculatum prefers to carry out its foraging activities on Yucca spp., A. salmiana, and then on O. rastrera. Ants traveled greater distances and carried out greater foraging effort (Ẋ=1.6) to forage on Yucca spp. However, when colony trails increased, foraging effort diminished. Although the density of palm trees in central Mexico is lower than the density of prickly pear cacti and agaves, their volume is greater and offers foraging conditions all year long.

The settlement, subsistence, and persistence of colonies of the escamolera ant depend on the habitat (Lara et al., 2015) that provides them with food, cover for rest and shade, or protection to their nests and scale insects breeding areas (Hölldobler and Wilson, 2008). The foraging area is important to avoid competition for resources among individuals from different colonies. The forage activity of L. apiculatum from March to September presented a peak at 17:00 h, up to 580 m2 per colony (Ramos et al., 1988; Mackay and Mackay, 2002). In this process, the soil vegetation cover -grasses, bushes, agaves, and prickly pear cacti- protects L. apiculatum during high temperature periods (Cruz et al., 2014); but, when vegetation cover is lacking, L. apiculatum has the option to build galleries and tunnels (Ramos et al., 1986).

The pressure on the colonies of ants in most of their distributional areas is related to the demand of this resource. This situation endangers the survival and persistence of this species in Mexico. As a result of this demand and its economic importance during the driest months (February to April) in central-northern Mexico -in addition to the absence of rainfed agriculture-, the extraction of escamoles threatens the survival of ant colonies and their production (Ramos et al., 2006; Esparza et al., 2008; Tarango, 2012; Cruz et al., 2014; Lara et al., 2015).

Studies on the management and conservation of the distribution areas of the ants are scarce. It is necessary to carry out more research to define the vegetal structure that allows the conservation of the ant, to extend or to improve its habitats and to increase its production. This includes handling domestic livestock, conserving soil and water, and conditioning the extraction of the escamol to a technical standard, that would enable the preservation of the resource for the next generations.

Conclusions

In Villa Gonzalez Ortega, Zacatecas, L. apiculatum mainly nests in A. salmiana and Yucca spp. Each colony frequently carries out its foraging activity with two, three, four, and five trails. The curvilinear and linear foraging distances and the forage substrates vary widely.

Literatura Citada

Academic SAS Institute Inc. 2015. JMP IN Software. JMP IN for Windows Release 12.1.0. Academic SAS Institute Inc. Cary, North Carolina. URL: URL: http://www.jmp.com/es/ (Consulta: julio 2015). [ Links ]

Akaike, H. 1969. Fitting autoregressive models for prediction. Ann. I. Stat. Math. 21: 243-247. [ Links ]

INEGI. 2010. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Villa González Ortega, Zacatecas. http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/32/32053.pdf . (Consulta: septiembre, 2015) [ Links ]

Cerdá, X. 1998. Critical termal limits in Mediterranean ant species: trade-offs between mortality risk and foraging performance. Funct. Ecol. 12: 45-55. [ Links ]

Cornejo J., M., 1988. Técnicas de investigación social: el Análisis de Correspondencias. PPU. Barcelona, España. 39 p. [ Links ]

Cortes, P. F., y T. E. León S. 2003. Modelo conceptual del papel ecológico de la hormiga arriera (Atta leavigata) en los ecosistemas de sabana estacional (Vichada, Colombia). Caldasia. 25: 403-417. http://www.revistas.unal.edu.co/index.php/cal/article/view/39395/41287 . (Consulta: septiembre, 2015). [ Links ]

Cruz L., J. D., L. A. Tarango A., J. L. Alcántara C., J. Pimentel L., S. Ugalde L., G. Ramírez V., y S. de J. Méndez G. 2014. Uso del hábitat por la hormiga escamolera (Liometopum apiculatum Mayr) en el Centro de México. Agrociencia 48: 569-582. [ Links ]

De Luna V., B., F. J. Macías R., G. Esparza F., E. León E., L. A. Tarango A., y S. de J. Méndez G. 2013. Insectos comestibles en Pinos Zacatecas: Descripción y análisis de la actividad. Agroproductividad 6: 35-43. [ Links ]

Del Toro, I., J. Pacheco A., and W. P. Mackay. 2009. Revision of the Ant Genus Liometopum Mayr (Hymenoptera:Formicidae). Sociobiology 52: 295-369. [ Links ]

Delfino, M. A., y L. M. Buffa. 2000. Algunas interacciones planta-áfido-hormiga en Córdoba (Argentina). Zool. Baetica 11: 3-15. [ Links ]

Dinwiddie M., L. et al. 2013. Estudio etnoentomológico de la hormiga escamolera (Liometopum apiculatum) en dos localidades en el estado de Querétaro. Agroproductividad 6: 27-34. [ Links ]

Dornhaus, A., and S. Powell 2010. Foraging and defense strategies. In: Lori Lach, Catherine Parr, and Kirsti Abbott. (eds.) Ant Ecology. Oxford University Press. Oxford, United Kingdom. pp: 210-232. [ Links ]

Esparza F., G., F. Macías R., M. Martínez S., M. Jiménez G., y S. de J. Méndez G. 2008. Insectos comestibles asociados a las magueyeras en el Ejido Tolosa, Pinos, Zacatecas, México. Agrociencia 42: 243-252. [ Links ]

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México, México, D. F. 90 p. [ Links ]

Giménez A., J., y O. González C. 2011. Pisos de vegetación de la sierra catorce y territorios. Acta Bot. Mex. 94: 91-123. [ Links ]

González O., J. A. 2003. Aplicación de análisis multivariantes al estudio de las relaciones entre las aves y sus hábitats: un ejemplo con paseriformes montanos no forestales. Ardeola 50: 47-58. [ Links ]

Gullan, P. J., and M. Kosztarab. 1997. Adaptations in scale insects. Ann. Rev. Entomol. 42: 23-50. [ Links ]

Hithford W., G., G. Barness, and Y. Steinberger. 2008. Effects of three species of Chihuahuan Desert ants on annual plants and soil properties. J. Arid Environ. 72: 392-400. [ Links ]

Hotelling, H. 1993. Analysis of a complex of statistical variables in to principal components. J. Educ. Psychol. 24: 417-441. [ Links ]

Hölldobler B., and E. O. Wilson. 2008. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. Norton. New York. 522 p. [ Links ]

INEGI (Instituto Nacional de Estadística y Geografía). 2010. Censo General de Población y Vivienda. http://www.inegi.org.mx/sistemas/consulta_resultados/iter2010.aspx . (Consulta: septiembre, 2015). [ Links ]

Lara J., P., J. R. Aguirre R., P. Castillo L., y J. A. Reyes A., 2015. Biología y aprovechamiento de la hormiga de escamoles, Liometopum apiculatum Mayr (Hymenoptera: Formicidae). Acta Zool. Mex. 31: 251-264. [ Links ]

Mackay P., W., and E. Mackay E. 2002. The Ants of New Mexico (Hymenoptera: Formicidae). Edwin Mellen Press. Lewinston, NY. 400 p. [ Links ]

Maindonald J., H. 2004. Using R for Data Analysis and Graphics Introduction, Code and Commentary. Centre for Bioinformation Science, Australian National University. 99 p. [ Links ]

McCullagh, P., and A. Nelder J. 1989. Generalized Linear Models. Second edition. Chapman and Hall. London. 256 p. [ Links ]

Microsoft Office. 2013. Microsoft Excel software. Microsoft Excel for windows release 2013. [ Links ]

Miller T., E. X. 2007. Does having multiple partners weaken the benefits of facultative mutualism? A test with cacti and cactus-tending ants. Oikos 116: 500-512. [ Links ]

Miranda, R. G., B. Quintero S., B. Ramos R., y H. A. Olguín A. 2011. La recolección de insectos con fines alimenticios en la zona turística de Otumba y Teotihuacán, Estado de México. PASOS Rev. Tur. Patrim. Cult. 9: 81-100. [ Links ]

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL URL http://www.R-project.org/ (Consulta: julio 2015). [ Links ]

Ramos E., J., B. Délage D., A. Flores R., E. Sandoval C., y S. Cuevas C. 1986. Estructura del nido Liometopum occidentale var. Luctuosum manejo y cuidados de estos en los núcleos rurales de México de las especies productoras de escamoles (L. apiculatum M. y L. occidentale Var. Luctuosum W.) (Himenoptera, Formicidae). An. Inst. Biol. UNAM. Méx., Ser. Zool. 2: 333-342. [ Links ]

Ramos E., J ., and J. Levieux. 1992. Liometopum apiculatum Mayr and L. occidentale Wheeler foraging areas studied with radioisotopes markers (Hymenoptera, Formicidae-Dolichoderinae). B. Soc. Zool. Fr. 117: 21-30. [ Links ]

Ramos E., J ., B. Délgade D., y N. E. Galindo M. 1988. Observaciones bioecotologicas de Liometopum apiculatum M. y Liometopum occidentale var. Luctuosum W. (Himenoptera-Formicidae). An. Inst. Biol. UNAM. Méx ., Ser. Zool. 1: 341-354. [ Links ]

Ramos E., J ., J. M. Pino M., y M. Conconi. 2006. Ausencia de una regulación y normalización de la explotación y comercialización de insectos comestibles en México. Folia Entomol. Mex. 45: 291-318. [ Links ]

Rojas F., P. 2001. Las hormigas del suelo en México: diversidad, distribución e importancia (Hymenoptera: Formicidade). Acta Zoológica Mexicana. Número Especial 1: 189-238. [ Links ]

Rzedowski, J. 1978. La Vegetación de México. Limusa. México, D. F. 432 p. [ Links ]

Schreuder, H., T. Gregoire, and G. Wood. 1993. Sampling Methods for Multiresource Forest Inventory. John Wiley and Sons. New York. 446 p. [ Links ]

Tarango A., L. A. 2012. Los escamoles y su producción en el Altiplano Potosino-Zacatecano. RESPYN 4: 139-144. [ Links ]

Truett, J., J. Cornfield, and W. Kannel. 1967. A multivariate analysis of the risk of coronary heart disease in Framingham. J. Chronic Dis. 20: 511-524. [ Links ]

Velasco C., C., M. del C. Corona V., y R. Peña M. 2007. Liometopum apiculatum (Formicidae: Dolichoderinae) y su relación trofobiótica con Hemiptera Sternorrhyncha en Tlaxco, Tlaxcala, México. Acta Zool. Mex . 23: 31-42. [ Links ]

XLSTAT. 2015. XLSTAT software. Xlstat for Windows Release 2015.1.01. Copyright Addinsoft 1994-2014. URL: URL: https://www.xlstat.com/es / (Consulta: julio 2015). [ Links ]

Zar J., H. 1999. Biostatistical Analysis. Fourth edition. Prentice Hall Inc, New Jersey. pp: 32-45. [ Links ]

Received: August 2016; Accepted: June 2017

*Author for correspondence: ltarango@colpos.mx

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons