SciELO - Scientific Electronic Library Online

 
vol.50 issue1Fitting of the GEV, GLO and GPA distributions with trimmed L moments (1, 1) in 21 annual flood records of the hydrological region no. 10 (Sinaloa), MexicoDetasseling in parental single crosses of maize (Zea Mays L.) hybrids for high valleys of Mexico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Agrociencia

On-line version ISSN 2521-9766Print version ISSN 1405-3195

Agrociencia vol.50 n.1 Texcoco Jan./Feb. 2016

 

Crop Science

Productivity of F 1 and F 2 maize (Zea mays L.) Hybrids in the highland of Mexico

Margarita Tadeo-Robledo1 

Job Zaragoza-Esparza1 

Alejandro Espinosa-Calderón2  * 

Antonio Turrent-Fernández2 

Benjamín Zamudio-González2 

Juan Virgen-Vargas2 

K. Yazmine Mora-García1 

Roberto Valdivia-Bernal3 

1Facultad de Estudios Superiores Cuautitlan. Universidad Nacional Autónoma de México. Carretera Cuautitlán Teoloyucán, Km 2.5. Cuautitlán Izcalli, Estado de México. México. (tadeorobledo@yahoo.com), (jobzaragoza4920@ yahoo.com), (megaberry@hotmail.com),

2Campo Experimental Valle de México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 13.5 Carretera Los Reyes Texcoco. 56250, Coatlinchan, Texcoco, Estado de México, México. (espinoale@yahoo.com.mx), (aturrent37@yahoo.com.mx), (bzamudiog@yahoo.com.mx), (jvirgen_vargas@hotmail.com),

3Universidad Autónoma Nayarit, México.(beto49_2000@yahoo.com.mx).


Abstract

In Mexico 8.5 million ha of maize (Zea mays L.) are sown each year. Hybrid seed is used in about 25 % of this area, and in the rest, local varieties (50 % genuine maize landraces and 25 % locally adapted, improved varieties or advanced generations of hybrids). The hybrid seed use is concentrated in areas of high productive potential. Each year there is reluctance to acquire new seed due to its high cost. To verify the yield of F1 and F2 hybrids, an evaluation was made of varieties H-40, H-51 AE, H-57 AE and Puma 1167 in the spring -summer cycle of 2013 by the Cuautitlán Graduate Studies Department of UNAM. The experimental design was complete randomized blocks with four replicates. The statistical analysis was carried out in a factorial design with the following factors: hybrids (4), population densities (2), generation F1 and F2 (2), as well as the hybrid interactions x F1 F2, hybrids x PD, F1 F2 x PD, hybrids x F1 F2 x PD. The analysis of variance detected highly significant differences for yield among hybrids and generations F1 and F2, and significant differences among population densities; none of the interactions was significant. The CV was 12.0 % and the average value was 8422 kg ha-1. The F1 generation yielded an average of 9040 kg ha-1, and the F2 , 7804 kg ha-1. The hybrids with the highest yields were Puma 1167 (9989 kg ha-1) and H-57 AE (8334 kg ha-1). Compared to a population density of 70 000 plants ha-1 (8765 kg ha-1), a higher yield was obtained than with 55 000 plants ha-1. The results confirm that the use of the F2 generation of seed is not desirable, due to the decrease in productivity.

Key words: Zea mays L.; improved seed; yield of F1 and F2 hybrids

Resumen

En México se siembran 8.5 millones ha de maíz (Zea mays L.) cada año, en 25 % de esta superficie se emplea semilla mejorada; y semillas nativas (50 % de maíces nativos genuinos y 25 % variedades mejoradas acriolladas o generaciones avanzadas de híbridos) en el resto. La semilla mejorada se concentra en áreas de potencial productivo alto, cada año hay resistencia a la adquisición de semilla nueva, por su costo elevado. Para verificar el rendimiento de las generaciones F1 y F2, se evaluaron los híbridos H-40, H-51 AE, H-57 AE y Puma 1167, en el ciclo primavera-verano de 2013, en la Facultad de Estudios Superiores Cuautitlán, UNAM. El diseño experimental fue bloques completos al azar con cuatro repeticiones, el análisis estadístico se efectuó en forma factorial y los factores fueron: híbridos (4), densidades de población (2), generación F1 y F2(2), así como las interacciones híbridos x F1 F2, híbridos x DP, F1 F2 x DP, híbridos x F1 F2 x DP. El análisis de varianza detectó diferencias altamente significativas para rendimiento entre híbridos, generaciones F1 y F2 y diferencias significativas entre densidades de población, y ninguna de las interacciones fue significativa. El CV fue 12.0 % y el valor promedio 8422 kg ha-1. La generación F1 en promedio rindió 9040 kg ha-1 y la generación F2 7804 kg ha-1. Los híbridos con rendimiento mayor fueron Puma 1167 (9989 kg ha-1) y H-57 AE (8334 kg ha-1). Con la densidad de población de 70 000 plantas-1 ha-1(8765 kg ha-1) se obtuvo rendimiento mayor que con 55 000 plantas ha-1. Los resultados confirmaron que no conviene el uso de semilla de generación F2, por el decremento en su productividad.

Palabras clave: Zea mays L.; semilla mejorada; rendimiento ge neración F1 y F2

Introduction

In Mexico 8.5 million ha maize (Zea mays L.) are sown each year; 25 % of this surface with improved seed, and 75 % with local varieties (genuine landraces or 25 % with locally adapted, improved varieties, and landraces that have outcrossed with improved varieties or advanced generations of hybrids). The genetic influence of introduced improved varieties has provided advantages for the landrace maize varieties.

The use of improved seed is concentrated in the areas of high productive potential (irrigation or abundant rainfall). Each year the growers are reluctant to purchase new seed, because the cost is the highest in the world (Espinosa et al., 2009; Espinosa-Calderón et al., 2012a; Espinosa-Calderón et al., 2014); improved seed is used in only 6 % of the area of the High Valleys of Mexico, 2200 to 2600 masl, improved seed is used (Espinosa et al., 2012b).

As the seed market is controlled by a few private companies, 1000 seeds can cost as much as 2.71 dollars, whereas in the U.S. the price is 1.34 dollars (Espinosa et al., 2008; Espinosa et al., 2009). This is aggravated by the distortion of the seed system in Mexico due to the closing of the National Seed Producer (PRONASE). This resulted in the domination of large international companies and private companies (Espinosa et al., 2003; Coutiño et al., 2004; Luna et al., 2012). Producers have preferred not to depend on commercial seeds but to control their own seed production, as they have done for more than 330 generations (Boege, 2009; Turrent and Espinosa, 2006; Turrent, 2009). For this reason, they frequently use second generation hybrid seed (F2) or more advanced generations obtained from their own plot or from neighboring producers who have bought improved seed (Ortiz and Espinosa, 1991; Coutiño et al., 2004; Martínez- Gómez et al., 2006). The loss of heterosis causes a lower yield in the second generation with respect to the first (Ortiz and Espinosa, 1991; Espinosa et al., 1998; De León et al., 1998; Espinosa-Calderón et al., 1012a). According to Martínez-Gómez et al. (2006), the sowing of advanced generations has spread in various maize growing regions of Mexico (Ramírez et al., 1986; Coutiño et al., 2004; Espinosa-Calderón et al., 2012a), to a greater or lesser degree depending on the availability and supply of seed.

The decrease in yield of generation F2 may depend on the structure and conformation of each hybrid (trilinear, simple or double), of the nature of the parents and of the degree of endogamy of its lines (De León et al., 1998; Espinosa et al., 1998). The different ecological areas of Mexico also influence the genotypes that are used (Ramírez et al., 1986; Ortiz and Espinosa, 1991; Espinosa et al., 1998; De León et al., 1998). In the largest area of the Highlands, the hybrids H-48 and H-50 have been sown (González et al., 2007; González et al., 2008). In the Valley of Mexico Experimental Field (CEVAMEX) other hybrids have been developed in addition to the above, such as H-40, H-66, H-70 and H-51 AE, which have adequate male sterility for producing hybrid seed (Espinosa et al., 2012b).

Although there is a reduction in yield of the F2 generation with respect to the F1 generation in maize, it is important to understand the specific behavior of maize hybrids of the Highlands in the F2 generation with respect to the F1; that is, the level of yield loss should be established. In the present study an evaluation was made of some materials, with the hypothesis that the yield of F1 is sufficiently higher than that of F2 to justify the acquisition of new seed each cycle.

Materials and Methods

In the 2013 spring-summer cycle, the hybrids H-40, H-51 AE, H-57 AE and Puma 1167 were used to evaluate the yield of their F1 and F2 generations. The study was carried out in the fields of the Facultad de Estudios Superiores Cuautitlán (FESC), UNAM, Mexico, under dry conditions and with 55 000 and 70 000 plants ha-1.

The experimental design was complete randomized blocks with four replications, and the statistical analysis was factorial. The factors were as follows: hybrids (4), population densities (2), advanced F1 and F2 generations (2), and hybrid interactions x F1F2 x PD, hybrids x F1F2 x PD. Average values were compared made with Tukey test (p≤0.05).

The plot was prepared with machinery and consisted of clearing, harrowing, disking seeding with 80 cm spacing between rows. The NPK fertilization formula 80-40-00 was used. Although it is not recommended in the Highlands, the fertilizer is applied under May crop conditions, in a single basal application. Nitrogen as urea (46 % N) was used to complete the desired N units along with the diammonium phosphate (18-46- 00 of P) which was the source of P. Sowing was carried out in the second quarter of May 2013, planting three seeds per site with a 50 cm spacing within the rows, which generated 33 plants per 5 m row, equal to 82 500 plants ha-1, and a final plant density of 70 000 ha-1. Thinning left 28 plants per 5 m row, and in the 55 000 per ha, thinning maintained 22 plants per row, 35 d after sowing.

Weed control was made with applications of Herbamina and Gesaprim in pre-emergence, one day after sowing, in a proportion of 3 L: 3 kg per ha; and a second application 20 d after sowing with a mixture of 1 L of Sansón, 2 L of Hierbamina and 3 kg of Gesaprim per ha.

Plot size consisted of a row of 5 m length. The rows were sown with a separation of 0.80 cm, depositing three seeds per site every 0.50 cm.

Harvesting was done manually in the second half of November. All of the ears, including the damaged ones, were collected. In a representative sample of five ears, grain moisture was quantified with a Stenlite electric determiner; percentage of grain/cob was calculated after shelling the recently harvested ears and obtaining the quotient of grain weight over the weight of grain with cobs; data was also obtained of the variables ear length, rows per ear and grains per row. Previously, days to male flowering were determined in five plants per plot, when 50 % of the plants in the plot release pollen, as well as days to female flowering, when 50 % of the plants had at least 3 cm of stigma exposed. Plant height was measured from the base of the stem to the spike insertion node; ear height was measured from the base of the stem to the insertion node of the top ear. Grain yield was calculated using the following formula:

Yield = (FW X % DM x % G} X CF)/8600

where PC=field weight of the total of harvested ears per plot expressed in kg; % MS=percentage of dry matter of the grain sample of five recently harvested ears; % G=percentage of grain; FC=conversion factor for obtaining yield per ha which is obtained by dividing 10000 m2 / useful plot size in m2; 8600=constant value which permits the estimation of yield with 14 % moisture, which is used for commercial grain.

Results and Discussion

The factorial statistical analysis detected highly significant differences for yield between hybrids and F1F2 and significant differences between population densities. The interactions were not significant. The yield mean was 8422 kg ha-1 and CV was 12 % (Table 1).

Table 1 Mean squares and significance for yield (kg ha-1) and other variables evaluated in F1 and F2 of commercial hybrids in the Highlands. Spring-summer cycle of 2013, FESC-UNAM, Mexico. 

Variable REND 1 DFM 2 DFF 3 AP 4 AM 5 PHCO 6 GH 7 GM 8
REP 4990680* 2.90 11.9** 1654** 300.1 319** 0.26 4240
Híbridos 19605905** 6.85* 0.30 1916** 961** 21199** 1.64 6419
F F 9 1 2 24436611** 1.00 0.76 361.0 1.00 206.6 0.14 390
DP10 7504398* 0.06 8.30 297.6 42.2 47.3 1.30 1580
HxF F 11 1 2 103497.1 1.40 2.43 87.54 30.6 173.3 0.43 1853
HxDP12 1502893 2.85 2.68 192.8 69.0 114.0 0.90 346
F F xDP13 1 2 95339.0 0.01 0.39 289 289.0 0.40 1.26 361
HxF F xDP14 1 2 1540764 1.04 0.81 178.5 44.9 258.7 1.14 2813
CV (%)15 12.0 1.70 2.10 7.35 8.83 2.17 6.80 10.9
Media 8422 79 80 207 114 759 16 449

*p≤0.05 and **p≤0.01.

1REND = yield; 2DMF = number of days to male flowering; 3DFF = number of days to female flowering; 4PH = plant height; 5EH = ear height; 6PHCO = volumetric weight; 7GR = grains per row; 8GE = grains per ear; 9F1F2 = generation F1F2; 10PD = population density; 11HxF1F2 = interaction hybrids x F1F2; 12HxPD = interaction hybrids x population density; 13F1F2xPD = interaction generation F1F2 x population density; 14HxF1F2xPD = interaction hybrids x generation F1F2 x PD; 15CV (%) = coefficient of variation.

The highest yield of the hybrid Puma 1167 (9989 kg ha-1) was similar to that of H-57 AE (8334 kg ha-1), considering the mean of the F1 and F2 generations, and the two population densities under evaluation; both were statistically higher than H-51 AE and H-40, and were similar to each other (Table 2). H-57 AE was outstanding, because this hybrid, after evaluations in experiments for several years, is in the final stage of its validation. It was registered by INIFAP in the Colegio Nacional de Variedades Vegetales (CNVV); it is registered as H-53 AE with the number 3153-MAZ-1658-300615/C (Espinosa et al., 2012b). The results confirm the favorable characteristics of this hybrid with androsterility (Espinosa et al., 2009), given that it was superior to H-51 AE, which was released by INIFAP in 2012 (Espinosa et al., 2012b).

Table 2 Comparison of the averages of four hybrids, considering the averages of F1 and F2 and two population densities. Spring-summer cycle of 2013, FESC-UNAM, Mexico. 

Híbrido REND (kg ha -1 ) 1 DFM 2 DFF 3 AP 4 AM 5 PHCO 6 GH 7 GM 8
PUMA 1167 9989 a 80 a 80 a 221 a 118 a 776 a 30 a 467 a
H-57 AE 8334 a 80 a 80 a 202 bc 107 b 758 b 29 ab 465 a
H-51 AE 7927 b 78 b 80 a 211ba 123 a 753 b 26 c 427 a
H-40 7439 b 80 a 80 a 196c 107 b 750 b 27 bc 437 a
D.S.H. (0.05) 953 1.3 1.6 14.4 9.5 15.5 1.0 46.1

Means with different letter are statistically different (p≤0.05).

1REND = yield; 2DMF = number of days to male flowering; 3DFF = number of days to female flowering; 4PH = plant height; 5EH = ear height; 6PHCO = volumetric weight; 7GR = grains per row; 8GE = grains per ear.x

The male flowering of H-51 AE occurred in fewer days (78) than the other hybrids (80). For female flowering, the weight of 200 seeds, ear length, number of grains per ear, there were no significant differences. However, in plant height, volumetric weight and grains per row, two groups were defined (Table 2).

The comparison of means of the F1F2 generations, considering the mean of the four hybrids and the mean of the two population densities (Table 3), showed that the F1 generation yielded 9,040 kg ha-1, and was statistically different from F2, which yielded 7,804 kg ha-1; that is, F1 represented 115.8 % with respect to F2. This result is similar to that obtained in other studies (Ortiz and Espinosa, 1991; Valdivia and Vidal, 1995; Espinosa et al., 1998; Coutiño et al., 2004; Espinosa-Calderón et al., 2012a).

Table 3 Comparison of average values of the F1 and F2 generations of four maize hybrids for diverse variables evaluated considering the average of four hybrids and two population densities. Spring-summer cycle of 2013, FESC-UNAM, Mexico. 

F 1 y F 2 REND (kg ha -1 ) 1 DFM 2 DFF 3 AP 4 AM 5 PHCO 6 GH 7 GM 8
F1 9040 a 79 a 80 a 210 a 114 a 761 a 28 a 451 a
F2 7804 b 79 a 80 a 205 a 114 a 757 a 28 a 446 a
D.S.H. (0.05) 509 0.7 0.8 7.7 5 8.3 1.1 25

Means with different letter are statistically different (p≤0.05).

1REND = yield; 2DMF = days to male flowering; 3DFF = days to female flowering; 4PH = plant height; 5EH = ear height; 6PHCO = volumetric weight; 7GR = grains per row; 8GE = grains per ear.

The mean values of the variables male flowering, female flowering, plant height, ear height, volumetric weight, grains per row and grains per ear were not different (p>0.05) in the F1 and F2 generations. Therefore, probably the difference in yield of F2 with respect to F1 was due to other components which were not analyzed in the present study. These results are different from those obtained by Espinosa-Calderón et al. (2012a), because these authors detected differences in ear length and grains per ear. In both cases the mean of the F1 generation was higher with respect to F2 (Table 3).

Average yield of the four hybrids and the F1 and F2 generations was higher with the plant density of 70 000 plants ha-1, compared to 50 000 plants ha-1 (Table 4). These results coincided with those obtained with 70 000 plants per ha and other hybrids (Virgen et al., 2010; Virgen-Vargas et al., 2014).

Table 4 Comparison of averages of two population densities for diverse variables evaluated considering the mean value of four maize hybrids and the F1F2 generation. Spring-summer cycle of 2013, FESC-UNAM, Mexico. 

DP (plantas/ha -1 ) REND (kg ha -1 ) 1 DFM 2 DFF 3 AP 4 AM 5 PHCO 6 GH 7 GM 8
55 000 8080 b 79 a 80 a 210 a 115 a 758 a 28 a 444 a
70 000 8765 a 79 a 80 a 206 a 113 a 760 a 28 a 454 a
D.S.H. (0.05) 509 1 1 8 5 8 1 25

Means with different letter are statistically different (p≤0.05).

1REND = yield; 2DMF = days to male flowering; 3DFF = days to female flowering; 4PH = plant height; 5EH = ear height; 6PHCO = volumetric weight; 7GR = grains per row; 8GE = grains per ear.

In all cases the yields of the F1 generation were higher than those of the F2 generation, with 13.9 % in H-51 AE, and 119.4 % in H-40 (Table 5). These differences between F1 and F2 are documented in other studies (Ramírez et al., 1986; Ortiz and Espinosa, 1991; Valdivia and Vidal, 1995; De León et al., 1998; Espinosa et al., 1998; Coutiño et al., 2004; Espinosa et al., 2005; Martínez-Gómez et al., 2006; Espinosa-Calderón et al., 2012a).

Table 5 Yields (kg ha-1) obtained by maize hybrids in gen eration F1F2 as well as differences and percentages of F2 with respect to F1, considering the average of the two population densities under which these geno types were evaluated. Spring-summer cycle of 2013. 

Híbridos Generación F 1 -F 2
F 1 F 2 kg·ha -1 %
Puma 1167 10689 9290 1399 115.0
H-57 AE 8933 7735 1198 115.4
H-51 AE 8441 7412 1029 113.9
H-40 8097 6780 1317 119.4
Promedio 9040 7804 1236 115.8

Yield varied from 1,029 kg in F1 with respect to F2, of the hybrid H-51 AE, to 1399 kg in the hybrid Puma 1167 (average in the four hybrids of 1236 kg), equivalent to ($ 2500 per Mg of grain) a total of 3090 pesos for the commercialization of this grain. If new seed is acquired, the difference in favor of the producer would be 1690 pesos, even though the cost of the bag of seed would be 1400 pesos; thus, the purchase of seed would be profitable (Valdivia and Vidal, 1995; Espinosa et al., 1998; Martínez-Gómez et al., 2006; Espinosa-Calderón et al., 2012a).

Conclusions

The hypothesis that on the average the F1 generation exhibited higher yield and statistical difference with respect to F2 was confirmed. The trilinear hybrid Puma 1167 showed a higher average yield than H-40. The results confirm that it is not convenient to use seed of generation F2 due to its lower yield, which justifies the acquisition of new seed each cycle. If new seed is acquired each cycle, even with its present high cost, there would be a positive difference for the producer’s.

Literatura Citada

Boege, E. 2009. El Patrimonio Biocultural de los Pueblos Indígenas de México: Hacia la Conservación in situ de la Biodiversidad y Agrodiversidad en los Territorios Indígenas. Instituto Nacional de Antropología e Historia. México, D.F. 342 p. [ Links ]

Coutiño E. , B., G. Sánchez, V., y A. Vidal M. 2004. El uso de semilla F2 de híbridos de maíz en la Frailesca, Chiapas, reduce el rendimiento y las ganancias netas. Rev. Fitotec. Mex. 27: 261-266. [ Links ]

De León H., J., A. Martínez G., y S. Rodríguez S. 1998. Híbridos dobles de maíz de baja depresión endogámica en F2. Rev. Agron. Mesoamericana 9: 38-41. [ Links ]

Espinosa-Calderón, A., M. A. López-Pereira, y M. Tadeo-Robledo. 1998. Análisis agroeconómico del uso de semilla mejorada de maíz en los Valles Altos de México. Agron. Mesoamericana 9: 53-58. [ Links ]

Espinosa-Calderón, A. , M. Sierra M., y N. O. Gómez M. 2003. Producción y tecnología de semillas mejoradas de maíz por el INIFAP en el escenario sin la PRONASE. Agron. Mesoamericana 14: 117-121. [ Links ]

Espinosa C. A., M. Tadeo R., A. Mora B., R. Martínez M., D. Salazar H., M. Sierra M., A. Palafox C., F. Rodríguez M., y V. Esqueda E. 2005. Capacidad productiva de la generación F1 y F2 de híbridos de maíz androesteriles y fértiles evaluados en dos localidades. Memorias: VIII Congreso Internacional en Ciencias Agrícolas. Universidad Autónoma de Baja California, Mexicali, B. C. pp: 160-165. [ Links ]

Espinosa C. A., A. Turrent F., M. Tadeo R., N. O. Gómez M., M. Sierra M., y F. Caballero H. 2008. Importancia del uso de semilla de variedades mejoradas y nativas de maíz en México. In: Seefoó, J. L. (ed). Desde los Colores del Maíz, una Agenda para el Campo Mexicano. El Colegio de Michoacán, CONACYT. Zamora, Michoacán. Vol I: 233-255. [ Links ]

Espinosa-Calderón, A. , M. Tadeo-Robledo, A. Turrent-Fernández, M. Sierra-Macías, N. O. Gómez-Montiel, A. Palafox-Caballero, F. A. Rodríguez-Montalvo, F. Caballero-Hernández, R. Valdivia-Bernal, y B. Zamudio-González. 2009. Las semillas insumo fundamental para avanzar hacia la suficiencia alimentaria y reserva estratégica de granos. In: Ramírez C. A., B. Ramírez V., B. A. Cavalloti V., A. Cesín V. Reserva Estratégica de Alimentos: Una Alternativa para el Desarrollo del Campo Mexicano y la Soberanía Alimentaria. CEDRSSA-SAGARPA-CPUACH, pp: 77-90. [ Links ]

Espinosa-Calderón, A. , M. Tadeo-Robledo, I. Arteaga-Escamilla, A. Turrent-Fernández, M. Sierra-Macías, N. O. Gómez-Montiel, A. Palafox-Caballero, R. Valdivia-Bernal, V. Trejo-Pastor, y E. Canales-Islas. 2012a. Rendimiento de las generaciones F1 y F2 de híbridos trilineales de maíz en los Valles Altos de México. Universidad y Ciencia 28:57-64. [ Links ]

Espinosa C. A., M. Tadeo R., J. Virgen V., I. Rojas M., N. O. Gómez M., M. Sierra M., A. Palafox C., G. Vázquez C., F. A. Rodríguez M., B. Zamudio G., I. Arteaga E., E. Canales I., B. Martínez Y., y R. Valdivia B. 2012b. H-51 AE, híbrido de maíz para áreas de humedad residual, buen temporal y riego en Valles Altos del Centro de México. Rev. Fitotec. Mex. 35: 347-349. [ Links ]

Espinosa-Calderón, A. , A. Turrent-Fernández, M. Tadeo-Robledo, A. San Vicente-Tello, N. Gómez-Montiel, R. Valdivia-Bernal, M. Sierra Macías, y B. Zamudio-González. 2014. Ley de semillas y Ley federal de variedades vegetales y transgénicos de maíz en México. Rev. Mex. Ciencias Agrí. 5: 293-308. [ Links ]

González E. A., J. Islas G., A. Espinosa C. , J. A. Vázquez C., y S. Wood. 2007. Impacto económico del mejoramiento genético del maíz en México: híbrido H-50. Publicación Especial No. 24. INIFAP. México, D. F. 83 p. [ Links ]

González E., A., J. Islas G., A. Espinosa C. , J. A. Vázquez C., y S. Wood. 2008. Impacto económico del mejoramiento genético del maíz en México: híbrido H-48. Publicación Especial No. 25. INIFAP. México, D.F. 88 p. [ Links ]

Luna M., B. M., M. A. Hinojosa R., O. J. Ayala G., F. Castillo G., y J. A. Mejía C. 2012. Perspectivas de desarrollo de la industria semillera de maíz en México. Rev. Fitotec. Mex. 35: 1-7. [ Links ]

Martínez-Gómez, M. I., R. Gaytán-Bautista, L. Reyes-Muro, N. Mayek-Pérez, J. S. Padilla-Ramírez, y M. Luna-Flores. 2006. Rentabilidad de las generaciones F1, F2 y F3 de híbridos de maíz. Agrociencia 40: 677-685. [ Links ]

Ortiz T., E., y A. Espinosa C. 1991. Rendimiento de híbridos de maíz de la Zona de Transición El Bajío-Valles Altos por efecto de la utilización de semilla de generación F1 y F2. Rev. Chapingo 71: 49-52. [ Links ]

Ramírez V., P., M. Balderas M., y F. Gerón X. 1986. Potencial productivo de las generaciones avanzadas de los híbridos tropicales de maíz H-503, H-507 y H-510. Rev. Fitotec. Mex. 8: 20-34. [ Links ]

Turrent F., A., y A. Espinosa C. 2006. Seguridad alimentaria y el mercado nacional de semillas. In: Memorias del ciclo de conferencias. 10 Años de Enlace, Innovación, Progreso. Fundación Hidalgo Produce. INIFAP, CIRCE. Campo Experimental Pachuca, Pachuca, Hidalgo. pp: 4450. [ Links ]

Turrent F., A. 2009. Potencial productivo de maíz. Rev. Ciencias 92-93: 126-129. [ Links ]

Valdivia B., R., y V. A. Vidal M. 1995. Efecto de generaciones avanzadas en la producción de diferentes tipos de híbridos de maíz. Rev. Fitotec. Mex. 18:69-76. [ Links ]

Virgen V., J., J.L. Arellano V., I. Rojas M., M.A. Ávila P., y G.F. Gutiérrez. 2010. Producción de semilla de cruzas simples de híbridos de maíz en Tlaxcala, México. Rev. Fitotec Mex. 33: 107-110. [ Links ]

Virgen-Vargas, J., R. Zepeda-Bautista, M. A. Ávila-Perches, A. Espinosa-Calderón, J. L. Arellano-Vázquez, y A. J. GámezVázquez. 2014. Producción de semilla de líneas progenitoras de maíz: densidad de población e interacción. Agron. Mesoamericana 25: 323-335. [ Links ]

Received: January 01, 2015; Accepted: October 01, 2015

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons