SciELO - Scientific Electronic Library Online

 
vol.41 número7Detección de grasa extraña en grasa láctea por cromatografía de gases y estadística multivariableCaracterización de variedades de cebolla (Allium cepa L.) basada en características físicas y funcionales de la semilla índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.7 Texcoco oct./nov. 2007

 

Fitociencia

Regeneración de maíces blancos subtropicales vía embriogénesis somática

C. Manuel Hernández-García1 

Cristina López-Peralta1 

Marco T. Buenrostro-Nava1 

Elizabeth Cárdenas-Soriano2 

Alessandro Pellegrineschi3 

1 Genética, Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México. (cristy@colpos.mx)

2 Fitosanidad. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México.

3 Centro de Biotecnología Aplicada, CIMMYT. 56130. El Batán, Texcoco, Estado de México.


Resumen:

El maíz (Zea mays L.) se destina principalmente a la alimentación animal (maíces amarillos) y en menor proporción a la humana (blancos). Los maíces blancos subtropicales son importantes para los humanos. Sin embargo existen problemas de regeneración, vía embriogénesis somática, que limitan su transformación genética. Por tanto, el objetivo de esta investigación fue evaluar la embriogénesis somática en nueve líneas de maíces blancos subtropicales. En la inducción de embriogénesis somática se evaluaron 1, 2 y 5 mg L−1 de 2,4-D y Dicamba. Las líneas 78, 395 y 444 produjeron 70.1 a 87.2% de callos embriogénicos, similar a los testigos (67.2 a 74.7%). Las líneas 442 y 332 presentaron una tasa media de inducción de callos de 48.4 a 60.6%, mientras que las 330, 202, 204 y 331 mostraron los menores porcentajes (3.9 a 26.2%). Las líneas 330, 331 y el testigo 216×72 presentaron los mayores porcentajes con Dicamba, mientras que la línea 442 tuvo mayor porcentaje con 2,4-D. La inducción de las líneas varió entre dosis. La línea 395 regeneró 1.11 plantas por callo, similar a los tres testigos (0.74-0.95 plantas), mientras que las 442, 78 y 332 regeneraron 0.67, 0.37 y 0.33. Se obtuvieron plántulas enraizadas (92-99%) y aclimatación (95-100%) en las líneas 395, 442, 78 y 332. El número de plantas fértiles regeneradas fue 228, 187, 108 y 79 en las líneas 395, 442, 78 y 332. Se identificaron cuatro líneas embriogénicas de maíz blanco subtropical (395, 442, 78 y 332) con capacidad de regeneración de plantas fértiles en 17 semanas y con potencial para ser sometidas a transformación genética.

Palabras clave: Zea mays L.; 2,4-D; Dicamba; histología

Abstract:

Maize (Zea mays L.) is destined mainly for animal feed (yellow maizes) and in a smaller proportion for human consumption (white). The subtropical white maizes are important for humans. However, there are problems of regeneration, via somatic embryogenesis, that limit its genetic transformation. Therefore the objective of the present study was to evaluate somatic embryogenesis in nine lines of subtropical white maize. In the induction of somatic embryogenesis, 1, 2 and 5 mg L−1 of 2,4-D and Dicamba were evaluated. Lines 78, 395 and 444 produced 70.1 to 87.2% of embryogenic calluses, similar to the controls (67.2 to 74.7%). Lines 442 and 332 presented a mean induction rate of calluses of 48.4 to 60.6%, whereas 330, 202, 204 and 331 showed the lowest percentages (3.9 to 26.2%). Lines 330, 331 and the control 216×72 presented the highest percentages with Dicamba, whereas line 442 had its highest percentage with 2,4-D. The induction of the lines varies among doses. Line 395 regenerated 1.11 plants per callus, similar to the three controls (0.74-0.95 plants), while 442, 78 and 332 regenerated 0.67, 0.37 and 0.33. Rooted seedlings (92-99%) and acclimatization (95-100%) were obtained in lines 395, 442, 78 and 332. The number of fertile regenerated plants was 228, 187, 108 and 79 in lines 395, 442, 78 and 332. Four embryogenic lines of subtropical white maize (395, 442, 78 and 332) were identified with regeneration capacity of fertile plants in 17 weeks and with potential for being subjected to genetic transformation.

Key words: Zea mays L.; 2, 4-D; Dicamba; histology

Texto completo disponible sólo en PDF.

Agradecimientos

A Ana M. Sánchez del CIMMYT y al Dr. Jorge Valdez del Colegio de Postgraduados, por la toma de fotografías y fotomicrografías.

Literatura citada

Armstrong, C. L., and C. E. Green. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164: 207-214. [ Links ]

Armstrong, C. L., J. Romero-Severson, and T. K. Hodges. 1992. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor. Appl. Genet. 84: 755-762. [ Links ]

Bohorova, N. E., B. Luna, R. M. Brito, L. D. Huerta, and D. A. Hoisington. 1995. Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreds. Maydica 40: 275-281. [ Links ]

Bohorova, N., R. Frutos, M. Royer, P. Estañol, M. Pacheco, Q. Rascón, S. McLean, and D. Hoisington. 2001. Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworn in transgenic tropical maize. Theor. and Appl. Genet. 103: 817-826. [ Links ]

Bronsema, F. B. F., P. Redig, W. J. F. Van Oostveen, H. A. Van Onckelen, and A. A. M. Van Lammeren. 1996. Uptake and biochemical analysis of 2,4-D in cultured zygotic embryos of Zea mays L. J. Plant Physiol. 149: 363-371. [ Links ]

Bronsema, F. B. F., W. J. F. Van Oostveen, and A. A. M. Van Lammeren. 1997. Comparative analysis of callus formation and regeneration on cultured immature maize embryos of the inbred lines A188 and A632. Plant Cell, Tissue and Organ Culture 50: 57-65. [ Links ]

Bronsema, F. B. F., W. J. F. Van Oostveen, and A. A. M. Van Lammeren. 2001. Influence of 2,4-D, TIBA and 3,5-D on the growth response of cultured maize embryos. Plant Cell, Tissue and Organ Culture 65: 45-56. [ Links ]

Carvalho, C. H. S., N. Bohorova, P. N. Bordallo, L. L. Abreu, F. H. Valicente, W. Bressan, and E. Paiva. 1997. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 17: 73-76. [ Links ]

Chu, C. C., C. C. Wang, and C. S. Sun. 1975. Establishment of an efficient medium for another culture of rice through compara-tive experiments on the nitrogen sources. Science Sinica 18: 659-668. [ Links ]

De Aguiar-Perecin, M. L. R., A. Fluminhan, J. A. Dos Santos-Serejo, J. R. Gardingo, M. R. Bertão, M. J. U. Decico, and M. Mondin. 2000. Heterochromatin of maize chromosomes: structure and genetic effects. Genet. and Mol. Biol. 23: 1015-1019. [ Links ]

Duncan, D. R., M. E. Williams, B. E. Zehr, and J. M. Widholm. 1985. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322-332. [ Links ]

El-itriby, H. A., S. K. Assem, E. M. H. Hussein, F. M. Abdel-Galil, and M. A. Madkour. 2003. Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cellular and Development Biology - Plant 39: 524-531. [ Links ]

Fransz, P. F., and J. H. N. Schel. 1994. Ultrastructural studies on callus development and somatic embryogenesis in Zea mays L. In: Bajaj Y. P. S. (ed.). Biotechnology in Agriculture and Forestry: Maize. Springer-Verlag, Berlin. Vol. 25, pp: 50-65. [ Links ]

Iracheta-Donjuan, L., M. C. López-Peralta, V. A. González-Hernández, I. Sánchez-Cabrera, y E. Cárdenas-Soriano. 2003. Variación genotípica en la capacidad organogénica in vitro del maíz. Agrociencia 37: 451-465. [ Links ]

Jähne, A., D. Becker, and H. Lörs. 1995. Genetic engineering of cereal crop plants: a review. Euphytica 85: 35-44. [ Links ]

Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. [ Links ]

Neuffer, M. G., E. H. Coe, and S. R. Wessler. 1997. Mutants of Maize. Cold Spring Harbor Laboratory Press. New York. 468 p. [ Links ]

O’Kennedy, M. M., J. T. Burger, and D. K. Berger. 2001. Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 20: 721-730. [ Links ]

Phillips, G. C. 2004. Invited review: in vitro morphogenesis in plants-recent advances. In Vitro Cellular and Development Biology - Plant 40: 342-345. [ Links ]

SAS Institute. 2000. SAS/STAT User’ Guide. Release 6.03. Cary, NC. USA. [ Links ]

Slater, A., N. W. Scott, and M. R. Fowler. 2003. Plant Biotechnology: The Genetic Manipulation of Plants. Oxford University Press. United Kingdom. 368 p. [ Links ]

Steel, R. G., and J. H. Torrie. 1997. Principles and Procedures of Statistics: a Biometrical Approach. 3a ed. Mc-Graw Hill, New York. 666 p. [ Links ]

Suprasanna, P., K. V. Rao, and G. M. Reddy. 1991. Somatic embryogenesis and plant regeneration in maize. Acta Horticulturae 289: 265-266. [ Links ]

Vasil, V., C. Lu, and I. K. Vasil. 1985. Histology of somatic embryogenesis in cultured immature embryos of maize (Zea mays L.). Protoplasma 127: 1-8. [ Links ]

Recibido: Noviembre de 2006; Aprobado: Junio de 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons