SciELO - Scientific Electronic Library Online

vol.41 número7Habilitación de un tepetate por efecto de mejoradores biológicos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO



versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.7 Texcoco oct./nov. 2007



Accumulation of soil organic carbon in Pinus michoacana reforestations

Salomón Luis-Mejía1 

Armando Gómez-Guerrero1 

Jorge D. Etchevers-Barra2 

Gregorio Ángeles-Pérez1 

Miguel A. López-López1 

William R. Horwath3 

1 Forestal, Campus Montecillo. Colegio de Postgraduados. 56230. Carretera México-Texcoco km. 36.5. Montecillo, Estado de México. ( ( ( (

2 Edafología. Campus Montecillo. Colegio de Postgraduados. 56230. Carretera México-Texcoco km. 36.5. Montecillo, Estado de México. (

3 Universidad de California. Campus Davis, EE.UU. (


The transfer of stable carbon from vegetation to the soil is an important process for reducing elevated concentrations of atmospheric CO2. The objective of the present study was to calculate the mass of new soil organic carbonic (NSOC) incorporated as a result of the establishment of reforestation with Pinus michoacana. Plots sown with corn were studied, in which a portion of the area was reforested with pine. The amount of NSOC was calculated from the differences in composition of isotopes (δ13 C) from the soil and plant tissue, in a chronosequence, with the simple mixture model. Results indicated statistical differences (p≤0.001) in δ13 C between the group of corn plots and the reforestations. The amount of NSOC was 62 and 18%, in the depths of 0-5 and 5-10 cm in reforestations of 20 years. The fit of the data by apparent density and the use of a quadratic model indicated that the average mass of NSOC incorporation is 11.2 and 2.30 Mg ha−1 at 20 years, and the accumulation rates are 0.561 and 0.11 Mg ha−1 year−1 at the same depths. No NSOC from pine was found at depths of over 10 cm, which suggests a higher carbon dynamic in the superficial soil.

Key words: δ13 C; chronosequences in andisols; stable isotopes; soil organic matter


La transferencia de carbono estabilizado de la vegetación al suelo es un proceso importante para abatir las concentraciones elevadas de CO2 atmosférico. El objetivo de este trabajo fue calcular la masa de nuevo carbono orgánico del suelo (NCOS) incorporada como resultado del establecimiento de reforestaciones con Pinus michoacana. Se estudiaron parcelas con cultivo de maíz, en las cuales una porción del área se reforestó con pino. La cantidad de NCOS se calculó a partir de las diferencias en composición de isótopos (δ13 C) del suelo y tejido vegetal, en una cronosecuencia, con el modelo simple de mezclas. Los resultados indicaron diferencias estadísticas (p≤0.001) en δ13 C entre el grupo de parcelas de maíz y las reforestaciones. La proporción de NCOS fue 62 y 18%, en las profundidades de 0-5 y 5-10 cm en reforestaciones de 20 años. El ajuste de los datos por densidad aparente y el uso de un modelo cuadrático indicó que la masa promedio de incorporación de NCOS es 11.2 y 2.30 Mg ha−1 a los 20 años, y tasas de acumulación de 0.561 y 0.11 Mg ha−1 año−1 en las mismas profundidades. No se encontró NCOS desde pinos en profundidades mayores a 10 cm, lo que sugiere una dinámica de carbono más alta en el suelo superficial.

Palabras clave: δ13C; cronosecuencias en andosoles; isótopos estables; materia orgánica del suelo

Literatura citada

Acosta-Mireles, M., J. Vargas-Hernández, A. Velázquez-Martínez, J. D. Etchevers-Barra. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36(6): 725-736. [ Links ]

Arnalds A. 2004. Carbon sequestration and the restoration of land health: an example from Iceland. Climatic Change 65: 333-346. [ Links ]

Balesdent J., A. Mariotti, and B. Guillet. 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol. Biochem. 19:25-30. [ Links ]

Balesdent J., G. H. Wagner, and A. Mariotti. 1988. Soil organic matter turnover in long-term field experiments as revealed by Carbon-13 natural abundance. Soil Sci. Soc. Am. J. 52: 118-124. [ Links ]

Bekele A., and W. H. Hudnall. 2003. Stable isotope study of the prairie-forest transition soil in Louisiana. Soil Sci. 168: 783-792. [ Links ]

Bernoux, M., C. C. Cerri, C. Neill, and J. F. L. de Moraes. 1998. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82: 43-58. [ Links ]

Boutton W., T. 1991a. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. In: Carbon Isotope Techniques. Coleman, D. C., and B. Fry (eds). Academic Press Inc., San Diego, California. pp: 155-171. [ Links ]

Boutton W., T. 1991b. Stable carbon isotope ratios of natural materials: Atmospheric, terrestrial, marine, and freshwater environments. In: Carbon Isotope Techniques. Coleman, D. C., and B. Fry (eds). Academic Press Inc., San Diego, California. pp: 155-171. [ Links ]

Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica Cosmochimica Acta 12: 133-149. [ Links ]

Ehleringer J. R., and P. W. Rundel. 1989. Stable isotopes: history, units, and instrumentation. In: Stable Isotopes in Ecological Research. Rundel P. W., J. R. Echleringer, and K. A. Nagy (eds). Springer- Verlag, New York. pp: 1-15. [ Links ]

Etchevers, B. J. D.,C. Prat, C. Balbontín, M. Bravo, and M. Martínez. 2006. Influence of land use on carbon sequestration and erosion in Mexico, a review. Agronomie 26: 1-9. [ Links ]

García-Oliva F., and O. R. Masera. 2004. Assessment and measurement issues related to soil carbon sequestration in land-use, land-use change, and forestry (LULUCF) projects under the Kyoto protocol. Climatic Change 65: 347-364. [ Links ]

Garten Jr., C. T. 2002. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass and Bioenergy 23: 93-102. [ Links ]

Guo L. B., and R. M. Gifford. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8: 345-360. [ Links ]

Markewitz, D., F. Sartori, and C. Craft. 2002. Soil change and carbon storage in longleaf pine stands planted on marginal agricultural lands. Ecol. Applications 12(5): 1276-1285. [ Links ]

Nosetto, M. D., E. G. Jobbágy, and J. M. Paruelo. 2006. Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J. Arid Environ. 67: 142-156. [ Links ]

Paul E. A., S. J. Morris, J. Six, K. Paustian, and E. G. Gregorich. 2003. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci. Soc. Am. J. 67: 1620-1628. [ Links ]

Paul, K. I., P. J. Polglase, J. G. Nyakuengama, and P. K. Khanna. 2002. Change in soil carbon following afforestation. For. Ecol. Manag. 168: 241-257. [ Links ]

Peterson, B., and B. Fry. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Systematics 18: 293-320. [ Links ]

Post, W. M., and K. C. Kwon. 2000. Soil carbon sequestration and land use-change: processes and potential. Global Change Biol. 6: 317-327. [ Links ]

Resh, S. C, D. Binkley, and J. A. Parrotta. 2002. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5: 217-231 [ Links ]

Salinas-Garcia, J. R., A.D. Baez-González, M. Tiscareño-López, and E. Rosales-Robles. 2001. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil & Tillage Res. 59: 67-69. [ Links ]

Seppänen, P. 2002. Secuestro de carbono a través de reforestacio-nes de eucalipto en el trópico húmedo. Foresta veracruzana 4(2): 51-58. [ Links ]

Trouve, C., A. Mariotti, D. Schwartz, and B. Guillet. 1994. Soil organic carbon dynamics under Eucalyptus and Pinus planted on savannas in the Congo. Soil Biol. Biochem. 26(2): 287-295. [ Links ]

Woods, P. V., E. K. S Nambiar, and P. J. Smethurst. 1992. Effect of annual weeds on water and nitrogen availability to Pinus radiata trees in a young plantation. For. Ecol. Manag. 48, 145-163. [ Links ]

Yoneyama, T., Y. Nakanishi, A. Morita, and B. C. Liyanage. 2001. δ13C Values of organic carbon in cropland and forest soils in Japan. Soil Sci. Plant Nutr. 47(1): 17-26. [ Links ]

Received: November 2006; Accepted: August 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons