SciELO - Scientific Electronic Library Online

 
vol.41 número6Índice de peligro de incendios forestales de largo plazoÍndice de productividad de sitios multiespecíficos a través de funciones de distancia en sitios forestales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.6 México ago./sep. 2007

 

Recursos Naturales Renovables

Absorción de nitrógeno y crecimiento de Pinus greggii Engelm. Seis años después de una poda química de raíz

F. Clemencia Pacheco-Escalona1 

Armando Gómez-Guerrero1 

Arnulfo Aldrete1 

Aurelio M. Fierros-González1 

Víctor M. Cetina-Alcalá1 

1 Forestal. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillos, Estado de México. (agomezg@colpos.mx)


Resumen:

La poda química de raíz es una práctica cultural aplicada en vivero para mejorar la fibrosidad del sistema radical, entre otros propósitos. En este estudio se cuantificó la absorción de nitrógeno (N) en Pinus greggii Engelm. seis años después de la aplicación de una poda química de raíz en vivero. Los tratamientos fueron: bolsa y tapete impregnados con cobre (T1); bolsa impregnada con cobre (T2); tapete impregnado con cobre (T3); bolsa sin impregnación de cobre (T4, testigo). La absorción de N se determinó en una muestra de 20 árboles, después de aplicar al suelo una fuente marcada con 15N como (15NH4)2 SO4 y enriquecida al 49.2%. Se encontró que T2 causó mayor recuperación de N de la fuente marcada en follaje joven (p≤0.01). No hubo diferencias estadísticas entre tratamientos para el estado hídrico, crecimiento arbóreo y producción de materia seca aérea. Los análisis del follaje joven indicaron que la poda química de raíz tuvo efectos positivos en la absorción de N seis años después de plantar en campo, por lo que se infiere que dicha práctica es benéfica durante los primeros años de establecimiento de las plantaciones forestales.

Palabras clave: Pinus greggii; raíces finas; 15N

Abstract:

Chemical root pruning is a cultural practice in nurseries to improve fibrousness of the root system, among other purposes. In this study nitrogen uptake was quantified in Pinus greggii Engelm. six years after chemical root pruning was applied in a nursery. The treatments were: bag and carpet impregnated with copper (T1); bag impregnated with copper (T2); carpet impregnated with copper (T3); bag without impregnated copper (T4, control). N uptake was determined using a sample of 20 trees after soil application of a 15N marked source (15NH4)2 SO4 and enriched to 49.2%. It was found that T2 caused better N recovery from the marked source in young foliage (p≤0.01). There were no statistical differences among treatments for water status, tree growth, and dry aerial matter production. The analyses of young foliage indicated that chemical root pruning had positive effects in N uptake six years after planting in the field. It is thus inferred that this practices is beneficial during the few first years of establishment in forest plantations.

Key words: Pinus greggii; fine roots; 15N

Texto completo disponible sólo en PDF.

Literatura citada

Acosta-Mireles, M., J. Vargas-Hernández, A. Velázquez-Martínez, y J. D. Etchevers-Barra. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36: 725-736. [ Links ]

Arnold, M. A., and D. K. Struve. 1989. Cupric carbonate controls green ash root morphology and root growth. HortScience 24(2): 262-264. [ Links ]

Barajas R., J. E., A. Aldrete, J. J. Vargas H., y J. López U. 2004. La poda química en vivero incrementa la densidad de raíces en árboles jóvenes de Pinus greggii. Agrociencia 38: 545-553. [ Links ]

Bertsch, F. 2005. Estudios de absorción de nutrientes como apoyo a las recomendaciones de fertilización. Instituto de la potasa y el fósforo 57: 1-10. [ Links ]

Binkley, D. 1986. Forest Nutrition Management. J. Wiley & Sons, New York, U.S.A. 290 p. [ Links ]

Cabrera, M. L., and D. E. Kissel. 1989. Review and simplification of calculations in 15N tracer studies. Fertilizer Res. 20: 11-15. [ Links ]

Cetina A., V. M., V. A. González H., M. L. Ortega D., J. J. Vargas H., y A. Villegas M. 2002. Supervivencia y crecimiento en campo de Pinus greggii Engelm. previamente sometido a podas o sequía en vivero. Agrociencia 36(2): 233-241. [ Links ]

Chamshama, S. A. O., and J. B. Hall. 1987. Effects of nursery treatments on Eucalyptus camaldulensis field estableshiment and early growth at Mafiga, Morogoro, Tanzania. For. Ecol. Manag. 21: 91-108. [ Links ]

Chang, S. X., and C. M. Preston. 2000. Understory competition affects tree growth and fate of fertilizer-applied and 15N in a Coastal British columbia plantatión forest: 6 year results. Can. J. For. Res. 30: 1379-1388. [ Links ]

Chang, S. X., C. M. Preston, K. McCullough, G. F. Weetman, and J. Barker. 1995. Effect of understory competition on distribution and recovery of 15N applied to a western red cedar-western hemlock clear-cut site. Can. J. For. Res. 26: 313-321. [ Links ]

Ehlenringer, J. R., and P. W. Rundel. 1989. Stable isotopes: history, units, and instrumentation. In: Stable Isotopes in Ecological Research. Rundel P. W., J. R. Ehleringer, and K. A. Nagy (eds). Springer-Verlag, New York. pp: 1-15. [ Links ]

FAO (Food and Agricultural Organization of the United Nations). 1988. Soil map of the world. Revised legend. World soil resources report 60. Rome, Italy. 138 p. [ Links ]

Fife, D. N., and K. S. Nambiar. 1984. Movement of nutrients in radiata pine needles in relation to the growth of shoots. Annals Bot. 54: 303-314. [ Links ]

Foster, N. W., E. G. Beauchamp, and C. T. Corke. 1985. Inmobilization of nitrogen-15-labelled urea in a Jack pine forest floor. Soil Sci. Soc. Am. J. 49: 448-452 [ Links ]

García G., R. A. Gómez G., J. López U., J. J. Vargas H., and R. Horwath. 2004. Tree growth and δ13C among population of Pinus greggii Engelm. at two contrasting sites in central México. For. Ecol. and Manag. 198: 237-247. [ Links ]

Gautam, M. K., D. J. Mead, P. W. Clinon, and S. X. Chang. 2003. Biomass and morphology of pinus radiate coarse root components in a sub humid temperate silvopastoral system. For. Ecol. Manag. 177 (1): 387-397. [ Links ]

Gómez G., A., R. F. Powers, M. J. Singer, and W. R. Horwarth. 2002. N uptake and N status in ponderosa pine as affected by soil compaction and forest floor removal. Plant and Soil 242: 263-275. [ Links ]

Hacke, U. G., J. S. Sperry, W. T. Pockman, S. D. Davis, and K. A. McCulloh. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461. [ Links ]

Heilman, P. E., T. H. Dao, H. H. Cheng, S. R. Webster, and L. Christensen. 1982. Comparison of fall and spring applications of 15N-labeled urea to Douglas-Fir: II. Fertilizer nitrogen recovery in trees and soil after 2 years. Soil Sci. Soc. Am. J. 46: 1300-1304. [ Links ]

Krasowski, M. J., and J. N. Owens. 2000. Morphological and physiological attributes of root systems and seedling growth in three different Picea glauca reforestation stock. Can. J. For. Res. 30: 1669-1681. [ Links ]

Lieth, H. F. H. 1975. Primary production of the major vegetation units of the world. In: Primary Productivity of the Biosphere. Lieth, H. and R.H. Whittaker (eds). Ecological Studies 14. Springer-Verlag, New York and Berlin. pp: 203-215. [ Links ]

Lindstrom, A., and G. Rune. 1999. Root deformation in plantations of container-grown Scots pine trees: effects on root growth, tree stability and stem straightness. Plant and Soil 217: 29-37. [ Links ]

McCutchan, H., and K. A. Shackel. 1992. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L., cv. French). J. Am. Soc. Hort. Sci. 117:607-611. [ Links ]

Mead, D. J., and W. L. Prittchett. 1975. Fertilizer movement in a slash pine ecosystem. II. N distribution after two growing seasons. Plant and Soil 43: 467-478. [ Links ]

Mead, D. J. and C. M. Preston. 1994. Distribution and retranslocation of 15N in lodgepole pine over eight growing seasons. Tree Physiol. 14: 389-402. [ Links ]

Millard, P., and M. F. Proe. 1993. Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply. New Phytology 125: 113-119. [ Links ]

Nambiar, K. S., and G. D. Bowen. 1986. Uptake, distribution and retranslocation of nitrogen by Pinus radiata from 15N - labelled fertilizer applied to podzolised sandy soil. For. Ecol. Manag. 15: 269-284. [ Links ]

Nambiar, K. S., and D. N. Fife. 1991. Nutrient retraslocation in temperate conifers. Tree Physiol. 9: 185-207. [ Links ]

Nômmik, H., and K. Larsson. 1992. Effects of nitrogen source and placement on fertilizer 15N enrichment in Pinus sylvestris foliage. Scandinavian J. For. Res. 7: 155-163. [ Links ]

Perry, M. A., R. J. Mitchell, B. R. Zutter, G. R. Glover, and D. H. Gjerstad. 1994. Seasonal variation in competitive effect on water and pine responses. Can. J. For. Res. 24: 1440-1449. [ Links ]

Powers, R. F., and G. T. Ferrell. 1996. Moisture, nutrient, and insect constraints on plantation growth: the “garden of eden” study. J. For. Sci. 26: 126-144. [ Links ]

Preston, C. M., and D. J. Mead. 1994. Growth response and recovery of 15N-fertilizer one and eight growing seasons after application to lodgepole pine in British Columbia. For. Ecol. Manag. 65: 219-229. [ Links ]

Pritchett, L. W. 1986. Suelos Forestales; Propiedades, Conservación y Mejoramiento. Ed. LIMUSA, México. 634 p. [ Links ]

SAS Institute. 1998. SAS User’s Guide. SAS Institute Inc., Cary, NC. 595 p. [ Links ]

South, D.B., and D. G. M. Donald. 2002. Effect of nursery conditioning treatments and fall fertilization on survival and early growth of Pinus taeda L. seedlings in Alabama, U.S.A. Can. J. For. Res. 32: 1171-1179. [ Links ]

Staples, T. E., K. C. J. van Rees, and C. van Kessel. 1999. Nitrogen competition using 15N between early successional plants and planted white spruce seedlings. Can. J. For. Res. 29: 1282-1289. [ Links ]

Turner, J. 1977. Effect of nitrogen availability on N cycling in a Douglas-Fir stand. For. Sci. 23: 307-315. [ Links ]

Vilagrosa, A., J. Bellot, V. R. Vallejo, and E. Gil-Pelegrín. 2003. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J. Exp. Bot. 54: 2015-2024. [ Links ]

Weinbaum, S. A., M. L. Merwin, and T. T. Muraoka. 1978. Seasonal variation in nitrate uptake efficiency and distribution of absorbed nitrogen in non-bearing prune trees. J. Am. Soc. Hort. Sci. 103(4): 516-519. [ Links ]

Williams, L. E., and F. J. Araujo. 2002. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J. Am. Soc. Hort. Sci. 127(3): 448-454. [ Links ]

Recibido: Junio de 2006; Aprobado: Junio de 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons