SciELO - Scientific Electronic Library Online

 
vol.41 número5Modelación de los efectos de la geometría sol-sensor en la reflectancia de la vegetaciónCambios anatómicos en raíces de cebada (Hordeum vulgare L.) inducidos por cactodera galinsogae índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.5 Texcoco jul./ago. 2007

 

Matemáticas Aplicadas, Estadística y Computación

Diseño de un índice espectral de la vegetación: NDVIcp

Fernando Paz-Pellat1 

Enrique Palacios-Vélez1 

Martín Bolaños-González1 

Luis A. Palacios-Sánchez1 

Mario Martínez-Menes1 

Enrique Mejía-Saenz1 

Alfredo Huete2 

1 Hidrociencias. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México. (pellat@colpos.mx).

2 University of Arizona Dept. of Soil, Water and Environ. Sciences 1200 E. South Campus Dr., Rm. 429 Shantz Bldg. #38 Tucson, AZ 85721-0038.


Resumen:

Hay muchos índices de vegetación (IV) basados en relaciones del espacio espectral del rojo e infrarrojo cercano. En este trabajo se hace una revisión de la estructura de los IV más utilizados, usando una formulación para caracterizar curvas de igual índice de área foliar. Con el fin de resolver las inconsistencias encontradas en los IV, se propone uno nuevo (NDVIcp), basado en la estructura correcta del problema, bajo consideraciones empíricas. El NDVIcp se valida usando datos de experimentos en campo con maíz (Zea mays, L.) y algodón (Gossipyum spp).

Palabras clave: Espacio R-IRC; índices de vegetación; NDVIcp

Abstract:

There are many vegetation indices (VI) based on relationships of the spectral space of the red and near infrared. In this study, the structure of the most widely used VI is examined, using a formulation to characterize curves of equal leaf area index. In order to solve the inconsistencies found in the VI, a new one (NDVIcp) is proposed, based on the correct structure of the problem, under empirical considerations. The NDVIcp is validated using data from field experiments with maize (Zea mays L.) and cotton (Gossipyum spp.).

Key words: Space R-IRC; vegetation indices; NDVIcp

Texto completo disponible sólo en PDF.

Agradecimientos

Este trabajo se realizó con apoyo del CONACYT, convenio CONACYT-2002-C01-41792, del proyecto Agricultura Asistida por Sensores Remotos, y el de AGROASEMEX, S.A., contrato “Desarrollo de un Seguro Ganadero con Base en Sensores Remotos”, 2004-2005.

Literatura citada

Baret, F., and G. Guyot. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environnment. 35:161-173. [ Links ]

Baret, F. , G. Guyot, and D. J. Major. 1989. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation, In: Proceedings of IGARSS‘89. 12th Canadian Symposium on Remote Sensing, Vancouver, Canada. Vol. 3, pp: 1355-1358. [ Links ]

Bausch, W. C. 1993. Soil background effects on reflectance-based crop coefficients for corn. Remote Sensing of Environnment. 46: 213-222. [ Links ]

Bolaños, M., F. Paz, E. Palacios, E. Mejía, y A. Huete 2007. Modelación de los efectos de la geometría sol-sensor en la reflectancia de la vegetación, Agrociencia, 41: 527-537. [ Links ]

Clevers, J. G. P. W. 1989. The application of a weighted infraredred vegetation index for estimating leaf area by correcting for soil moisture. Remote Sensing of Environment. 29: 25-37. [ Links ]

Gilabert, M. A., J. González-Piqueras, F. J. Garcia-Haro, and J. Meliá. 2002. A generalized soil-adjusted vegetation index. Remote Sensing of Environment. 82: 303-310. [ Links ]

Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25: 295-309. [ Links ]

Huete, A. R., y R. D. Jackson, 1987. Suitability of spectral indices for evaluating vegetation characteristics on rangelands. Remote Sensing of Environment, 23: 213-232. [ Links ]

Huete, A. R., R. D. Jackson, and D. F. Post. 1985. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment. 17: 35-53. [ Links ]

Jordan, C. F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology. 50: 663-666. [ Links ]

Liu, H. Q., and A. Huete . 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing. 33: 457-465. [ Links ]

Meza Díaz, B., y G.A. Blackburn. 2003. Remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral indices. International Journal of Remote Sensing. 24:53-75. [ Links ]

Paz, F., L. A. Palacios, E. Palacios, M. Martínez, y E. Mejía. 2003. Un índice de vegetación sin efecto atmosférico: IVPP. In: A. de Alba, L. Reyes y M. Tiscareño (eds), Memoria del Simposio Binacional de Modelaje y Sensores Remotos en Agricultura México-USA. INIFAP-SAGARPA, Aguascalientes, México. pp: 46-51. [ Links ]

Paz, F., E. Palacios, E. Mejía, M. Martínez, y L.A. Palacios. 2005. Análisis de los espacios espectrales de la reflectividad del follaje de los cultivos. Agrociencia, 39:293-301. [ Links ]

Pearson, R. L., and L. D. Miller. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. In: Proceedings of the 8th International Symposium on Remote Sensing of Environment, ERIM International, Ann Arbor, MI. pp: 1357-1381 [ Links ]

Price, J. C. 1992. Estimating vegetation amount from visible and near infrared reflectances. Remote Sensing of Environment. 41: 29-34. [ Links ]

Qi, J., A. Chehbouni, A.R. Huete, Y.H. Kerr, and S. Sorooshian. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment. 48:119-126. [ Links ]

Richardson, A. J., and C. L. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric Eng. Remote Sensing. 43: 1541-1552. [ Links ]

Richardson, A. J., and C. L. Wiegand, 1991. Comparison of two models for simulating the soil vegetation composite reflectance of a developing cotton canopy. International Journal of Remote Sensing. 11:447-459. [ Links ]

Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soiladjusted vegetation indices. Remote Sensing of Environment. 55:97-107. [ Links ]

Rouse, J. W., R. H. Haas, J. A. Schell, D. W. Deering, and J. C. Harlan. 1974. Monitoring the vernal advancement of retrogradation of natural vegetation, MASA/GSFC, Type III, Final Report, Greenbelt, MD. pp: 1-371. [ Links ]

Tucker, C. J. 1979. Red and photographics infrared linear combination for monitoring vegetation. Remote Sensing of Environment. 8: 127-150. [ Links ]

Xia, L. 1994. A two-axis adjusted vegetation index (TWVI). International Journal of Remote Sensing. 15:1447-1458 [ Links ]

Yoshioka, H., T. Miura, A. R. Huete, and B. D. Ganapol, 2000. Analysis of vegetation isolines in red-nir reflectance space. Remote Sensing of Environment. 74: 313-326. [ Links ]

Recibido: Septiembre de 2006; Aprobado: Mayo de 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons