SciELO - Scientific Electronic Library Online

 
vol.41 número5Comparación entre sulfatos y compuestos quelados como fuentes de zinc y hierro en suelos calcáreosLos días artificiales largos inducen el anestro en ovejas pelibuey con patrón reproductivo continuo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.5 México jul./ago. 2007

 

Water-Soils-Climate

Detection of Escherichia Coli growth using infrared thermography

Guadalupe Hernández-Eugenio1 

Eliubi Echeverría-Landín1 

Federico Hahn Schlam1 

1 Departamento de Irrigación. Universidad Autónoma Chapingo, 56230. Chapingo, Estado de México. (guhe@correo.chapingo.mx)

Abstract:

The determination of microbiological contamination should be rapid and should be measured in situ. In the present work, a rapid and portable methodology was developed for the detection of Escherichia coli, based on the analysis of infrared thermal images. Cultures of E. coli in classic agar LEVINE medium were photographed in thermal images, obtained by means of an infrared camera (IR). Two prototypes were coupled to the IR camera for the purpose of maintaining a constant temperature (37 °C) of the samples. The first of these radiated heat at the base of the samples, while the second heated the sample radially. The growth kinetic was followed by thermal images, resulting that the minimum detection time of microbial contamination was at 5 h of growth. The most adequate device was the one that provided heat at the base of the samples. In addition, prediction models were obtained for establishing bacterial presence with a prediction efficiency of 100%.

Key words: Escherichia coli; infrared camera; emissivity; radiometer

Literatura citada

AWWA (American Public Health Association). 1988. Microbiological Examination. In: Clesceri, L. S., A. E. Greenberg A. D. Aeton. (eds). Standard Methods for the Examination of Water and Wastewater. American Public Health Association. U.S.A. pp:1 -140. [ Links ]

Badenas, C., and V. Caselles. 1992. A simple technique for estimating surface temperature by means of thermal infrared radiometer. Int J. Remote Sensing 13: 2951-2956. [ Links ]

Brabetz, W., W. Liebl, and K. H. Schleifer. 1993. Lactose permease of Escherichia coli catalyzes active ß-galactoside transport in a gram positive bacterium. J. Bacteriol. 175: 7488-7491. [ Links ]

Chung, K. S., C. N. Kim, and K. Namgoong. 2000. Evaluation of the petrifilm rapid coliform count plate method for coliform enumeration from surimi-based imitation crab slurry. J. Food Protection 63: 123-125. [ Links ]

Ellis, D.I., D. Broadhurst, D. B. Kell, J. Rowlandand, and R. Goodacre. 2002. Rapid and quantitative detection of the microbial spoilage of meat by Fourier tranform infrared spectroscopy and machine learning. Appl. Environ. Microbiol. 68: 2822-2828. [ Links ]

Hahn, F. 2002. Fungal spore detection on tomatoes using spectral Fourier signatures. J. Biosys. Eng. 81: 249-259. [ Links ]

Irudayaraj, J., H. Yangand, and S. Sakhamuri, 2001. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy. J. Mol. Struct. 606: 181-188. [ Links ]

Javis R. M., and R. Goodacre. 2004. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical Chem. 76: 40-47. [ Links ]

Jothikumar, N., and M. W. Griffitths. 2002. Rapid detection of Escherichia coli 0157:H7 with multiplex real time PCR assays. Appl. Environ. Microbiol. 68: 3169-3171. [ Links ]

Wisniewski, M., S. E. Lindow, and E. N. Ashworth. 1997. Observations of ice nucleation and propagation in plants using infrared video thermography. J. Plant Physiol. 113: 327-334. [ Links ]

Received: January 2007; Accepted: June 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons