SciELO - Scientific Electronic Library Online

 
vol.41 número5Detección del crecimiento de Escherichia Coli con termografía infrarroja índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.5 México jul./ago. 2007

 

Water-Soils-Climate

Comparison between sulfates and chelated compounds as sources of zinc and iron in calcareous soils

Rodrigo Ortega-Blu1 

Mauricio Molina-Roco2 

1 Universidad Técnica Federico Santa María. Departamento de Industrias. Casilla 110-V. Valparaíso Avenida Santa María. 6400, Santiago, Chile. (rodrigo.ortega@usm.cl).

2 Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales. Casilla 306, Santiago, Chile. (mamolina@puc.cl).

Abstract:

Pot experiments were performed in a greenhouse to compare zinc (Zn) and iron (Fe) sources: 1) corn plants were grown in a Zn-deficient soil and received a Zn fertilization (0, 1.9, 3.8, and 7.7 mg kg-1; equivalent to 0, 5, 10, and 20 kg Zn ha-1) as ZnEDTA and ZnSO4; 2) sorghum plants were grown in a soil where iron chlorosis symptoms had been observed and received a Fe fertilization (0, 1.5, 3, and 6 mg kg-1; equivalent to 0, 3, 6, and 12 kg Fe ha-1) as Fe-EDDHA and FeSO4. Corn dry matter (DM), Zn concentration, and Zn uptake were higher with Zn-EDTA as compared to ZnSO4. In the sorghum experiment the highest DM production was obtained with Fe-EDDHA, which increased Fe concentration and uptake in higher proportion as compared to FeSO4. However, only highest Fe rates eliminated Fe chlorosis. Residual soil DTPA-extractable Zn and Fe levels were higher for chelates in comparison to sulfates; the largest differences between sources were found at the highest Zn and Fe rates. Although sulfates needed higher rates to achieve similar effects, their benefit/ cost relationship was higher than chelated sources due to their lower cost. However, factors such as the residual effect of each source, crop sensitivity, and the value of the crop should be also considered when choosing a Zn or Fe fertilizer source for similar soils.

Key words: Chelates; Fe-EDDHA; FeSO4; micronutrient availability; Zn and Fe uptake; Zn-EDTA; ZnSO4; residual micronutrients

Full text available only in PDF format

Acknowledgments

The authors would like to thank the Company Tradecorp Spain for funding in part this research. Mauricio Molina would like to acknowledge PUC-MECESUP (0210) scholarship.

Literature cited

Alhendawi, R. A., V. Römheld, E. A. Kirkby, and H. Marschner. 1997. Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. J. Plant Nutr. 20: 1731-1753. [ Links ]

Amrani, M., D. G. Westfall, and G. A. Peterson. 1999. Influence of water solubility of granular Zn fertilizers on plant uptake and growth. J. Plant Nutr. 22: 1815-1827. [ Links ]

Boer, G. T., and H. M. Reisenauer. 1973. DTPA as an extractant of available soil iron. Commun.Soil Sci. Plant Anal. 4: 121-128. [ Links ]

Brown, A. L., B. A. Krantz, and P. E. Martin. 1964. The residual effect of zinc applied to soils. Soil Sci. Soc. Am. Proc. 28: 236-238. [ Links ]

Fageria, N. K., V. C. Baligar, and R. B. Clark. 2002. Micronutrients in crop production. Adv. Agron. 77: 185-268. [ Links ]

Follet, R. H., and W. L. Lindsay. 1971. Changes in DTPA-extractable zinc, iron, manganese, and copper in soils following fertilization. Soil Sci. Soc. Am. J. 35: 600-602. [ Links ]

Gangloff, W., D. G. Westfall, G. A. Peterson, and J. J. Mortvedt. 2002. Relative availability coefficients of organic and inorganic Zn fertilizers. J. Plant Nutr. 25: 259-273. [ Links ]

Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In: Methods of Soil Analysis. Part 1. Klute, A. (ed). Agron. Monog. 9. ASA. Madison, WI. pp: 383-412. [ Links ]

Gil-Ortiz, R., and I. Bautista-Carrascosa. 2004. Effects of Fe-EDDHA chelate application on evolution of soil extractable iron, copper, manganese, and zinc. Commun. Soil Sci. Plant Anal. 35: 559-570. [ Links ]

Godsey, C. B., J. P. Schmidt, A. J. Schlegel, R. K. Taylor, C. R. Thompson, and R. J. Gehl. 2003. Correcting iron deficiency in corn with seed row-applied iron sulphate. Agron. J. 95: 160-166. [ Links ]

Goos, R. J., and S. Germain. 2001. Solubility of twelve iron fertilizer products in alkaline soils. Commun. Soil Sci. Plant Anal. 32: 2317-2323. [ Links ]

Grant, W. T. 1982. Exchangeable cations. In: Page, A. L., R. H. Miller, and D. R. Keeney (eds). Methods of Soil Analysis. Part 2. 2nd edition. Agron. Monog. 9. ASA. Madison, WI. pp: 159-165. [ Links ]

Lindsay, W., and W. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42: 421-428. [ Links ]

Lindsay, W. L. 1991. Inorganic equilibria affecting micronutrients in soil. In: Micronutrients in Agriculture. Mortvedt, J. J., F. R. Cox, L. M. Shuman, and R. M. Welch (eds). SSSA. Madison, Wis. USA. pp: 89-112. [ Links ]

Loeppert, R. H. 1986. Reactions of iron and carbonates in calcareous soils. J. Plant Nutr. 9: 195-214. [ Links ]

Loeppert, R. H., and C. T. Hallmark. 1985. Indigenous soil properties influencing the availability of iron in calcareous soils. Soil Sci. Soc. Am. J. 49: 597-603. [ Links ]

Lucena, J. J. 2000. Effect of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review. J. Plant Nutr. 23: 1591-1606. [ Links ]

Ma, Y. B., and N. C. Uren. 1997. The fate and transformation of zinc added to soils. Aust. J. Soil Res. 35: 727-738. [ Links ]

Marschner, H., V. Römheld, and M. Kissel. 1986. Different strategies in higher plants in mobilization and uptake of iron. J.Plant Nutr. 9: 695-713. [ Links ]

Martens, D. C., and W. L. Lindsay. 1990. Testing soils for copper, iron, manganese and zinc. In: Soil Testing and Plant Analysis. Westerman, R. L. (ed). SSSA. Madison, WI. pp: 229-264. [ Links ]

Mc Lean, E. O. 1982. Soil pH and lime requirement. In: Page, A. L. , R. H. Miller, and D. R. Keeney (eds). Methods of Soil Analysis. Part 2. 2nd edition. Agron. Monog. 9. ASA. Madison, WI. pp: 199-223. [ Links ]

Morris, D. R., R. H. Loeppert, and T. J. Moore. 1990. Indigenous soil factors influencing iron chlorosis of soybean in calcareous soils. Soil Sci. Soc. Am. J. 54: 1329-1336. [ Links ]

Mortvedt, J. J. and P. M. Giordano. 1971. Response of grain sorghum to iron sources applied alone or with fertilizers. Agron. J. 63: 758-761. [ Links ]

Mulvaney, R. L. 1996. Nitrogen: Inorganic forms. In: Methods of Soil Analysis. Part 3. Chemical Methods. American Society of Agronomy. Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johanson, and M. E. Summer (eds). Madison, WI. pp: 1123-1184. [ Links ]

Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. In: Methods of soil analysis. Part 3. Chemical methods. American Society of Agronomy. Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johanson, and M. E. Summer (eds). Madison, WI. pp: 961-1010. [ Links ]

Obrador, A., J. M. Alvarez, M. D. Fernández, and M. López-Valdivia. 2002. Changes with time of zinc forms in an acid, neutral, and a calcareous soil amended with three organic zinc complexes. Aust. J. Soil Res. 40: 137-148. [ Links ]

Olsen, S. R., C.V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939:1-19. Gov. Printing Office Washington D.C. [ Links ]

Rhoades, J. D. 1982. Soluble salts. In: Page, A. L., R. H. Miller, and D. R. Keeney (eds). Methods of soil analysis. Part 2. 2nd edition. Agron. Monog. 9. ASA. Madison, WI. pp: 167-169. [ Links ]

Sadzawka, A., M. Carrasco, R. Grez, y M. Mora. 2004a. Métodos de análisis recomendados para los suelos chilenos. Comisión de Normalización y Acreditación, Sociedad Chilena de la Ciencia del Suelo. Santiago, Chile. 113 p. [ Links ]

Sadzawka, A., R. Grez, M. Carrasco, y M. Mora. 2004b. Métodos de análisis de tejidos vegetales. Comisión de Normalización y Acreditación, Sociedad Chilena de la Ciencia del Suelo. Santiago. Chile. 53 p. [ Links ]

SAS Institute Inc. 1999. SAS 8 Online Doc® Version Eight. Available. Available. http://v8doc.sas.com . Accessed May., 2007. [ Links ]

Self, J. R., and J. B. Rodríguez. 1998. Laboratory manual for AG564. Soil and plant chemical analysis. Soil, water and plant testing laboratory. Department of Soil and Crop Sciences. Colorado State University, Fort Collins, Colorado, USA. 142 p. [ Links ]

Sims, J. T., and G. V. Johnson. 1991. Micronutrient soil tests. In: Micronutrients in Agriculture. Mortvedt, J. J., F. R. Cox, L. M. Shuman, and R.M. Welch (eds). SSSA. Madison, WI. pp: 427-476. [ Links ]

Singh, M. V., and I. P. Abrol. 1986. Transformation and movement of zinc in an alkali soil and their influence on the yield and uptake of zinc by rice and wheat crops. Plant Soil 94: 445-449. [ Links ]

Vempati, R. K., and R. H. Loeppert . 1988. Chemistry and mineralogy of Fe-containing oxides and layer silicates in relation to plant available iron. J. Plant Nutr. 11: 1557-1574. [ Links ]

Xiang, H. F., H. A. Tang, and O. H. Ying. 1995. Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma 66: 121-135. [ Links ]

Received: June 2006; Accepted: May 2007

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License