SciELO - Scientific Electronic Library Online

 
vol.41 número1Patrones de variación genética en cuatro subespecies de venado cola blanca del Noreste de MéxicoAnálisis genético de la tolerancia a Cercospora spp. en líneas endogámicas de maíz tropical índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.1 Texcoco ene./feb. 2007

 

Crop science

Hydric relationships and osmotic adjustment in wheat

Herman Silva-Robledo1 

Mauricio Ortiz-Lizana1 

Edmundo Acevedo-Hinojosa1 

1Departamento de Producción Agrícola. Facultad de Ciencias Agronómicas. Universidad de Chile, Casilla 1004 Santiago. Chile. (hsilva@uchile.cl)


Abstract

With the aim of comparing the effect of two environments on hydric relationships, an analysis was made of the variation of osmotic adjustment and its relationship with yield in 20 wheat genotypes in the greenhouse and the field. It is postulated that osmotic adjustment (OA), measured in leaves of plants grown in the greenhouse, is an indicator of the OA in leaves of plants established in the field. The plants were established in pots in the greenhouse; one group was watered at field capacity (FC) and the other at 40% FC. In the field the plants were established in two assays: one with and the other without irrigation. The variables were: total water potential (Ψ), osmotic potential (ψs), water potential at maximum turgor (ψsh) and pressure potential (ψp). In the greenhouse, the osmotic adjustment value was lower (0.00 and 0.50 MPa), compared with the field values (0.01 to 0.7 MPa). There was high interaction irrigation×sampling, replication×sampling and irrigation×genotype in the field, but not in the greenhouse. In the field there was positive correlation between OA and yield (R2=0.31; p≤0.05), but the OA measured in the greenhouse was not correlated with the OA measured in the field.

Key words: Triticum aestivum L.; water stress; grain yield

Resumen

Para comparar el efecto de dos medios ambiente en las relaciones hídricas se analizó la variación del ajuste osmótico y su relación con el rendimiento en 20 genotipos de trigo en invernadero y campo. Se postula que el ajuste osmótico (AO), medido en hojas de plantas crecidas en invernadero, es un indicador del AO en hojas de plantas establecidas en campo. Las plantas se establecieron en macetas en invernadero; un grupo se regó a capacidad de campo (CC) y el otro a 40% de la CC. En campo las plantas se establecieron en dos ensayos: uno con y otro sin riego. Las variables fueron: potencial hídrico total (Ψ), potencial osmótico (ψs), potencial osmótico a turgencia máxima (ψsh) y potencial de presión (ψp). En invernadero, el valor del ajuste osmótico fue más bajo (0.00 y 0.50 MPa), comparado con los valores de campo (0.01 a 0.7 MPa). Hubo una alta interacción riego×muestreo, repetición×muestreo y riego×genotipo en campo, pero no en invernadero. En campo hubo correlación positiva entre AO y rendimiento (R2=0.31; p≤0.05), pero el AO medido en invernadero no se correlacionó con el AO medido en campo.

Palabras clave: Triticum aestivum L.; déficit hídrico; rendimiento en grano

LITERATURA CITADA

Abebe T., A. C. Guenzi, B. Martin, and C. Cushman. 2003. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131: 1748-1755. [ Links ]

Babu, CH. R., P. M. Safiullah, A. Blum, and H. T. Nguyen. 1999. Comparison of measurement method of osmotic adjustment in rice cultivars. Crop Sci. 39: 150-158. [ Links ]

Barrs, H. D. and P. E. Weatherley. 1962. A re-examination of the turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15: 413-428. [ Links ]

Basnayake, J., M. Cooper, R. G. Henzell, and M. M. Ludlow. 1996. Influence of rate of development of water deficit on the expression of maximum osmotic adjustment and desiccation tolerance in three grain sorghum lines. Field Crop Res. 49: 65-76. [ Links ]

Bussis, D., and D. Heineke. 1998. Acclimation of potato plants to polyethylene glycl-induced water deficit II. Contents and subcellular distribution of organic solutes. J. Exp. Bot. 49: 1361-1370. [ Links ]

Chimenti, C., M. Marcantonio, and A. Hall. 2006. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crop Res. 95: 305-315. [ Links ]

Clifford, S., S, Arndt, J. Corlett, S. Joshi, N. Sankhla, M. Popp, and H. Jones. 1998. The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritania (Lamk). J. Exp. Bot. 49: 867-877. [ Links ]

Comisión Nacional de Riego. 1981. Estudio de Suelos del Proyecto Maipo IV. Ministerio de Agricultura. Santiago, Chile. pp: 604-802. [ Links ]

El Hafid, R., D. Smith, M. Karrou, and K. Samir. 1998. Physiological responses of spring durum wheat cultivars to early-seasons drought in a Mediterranean environment. Ann. Bot. 81: 363-370. [ Links ]

Fan, S., T. Blake, and E. Blumwald. 1994. The relative contribution of elastic and osmotic adjustment to turgor maintenance in woody species. Physiol. Plant. 90: 408-413. [ Links ]

Glinka, Z., and M.M. Ludlow. 1992. Comparative osmotic adjustment to water deficit in Texas 671 and E57. In: Proc. 2nd Aust. Sorghum Conf. Fosle. M.A., RG Henzell, and P.N. Vance (eds.). Australian Institute of Agricultural Science. Melbourne, Australia. pp: 316-325. [ Links ]

Hsiao, T., E. Acevedo, E. Fereres, and D. Henderson. 1976. Water stress, growth, and osmotic adjustment. Philos. Trans. R. Soc London, B 479-500. [ Links ]

Hongbo, S., L. Zongsuo, and S. Mingan. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids and Surf.Biointerfaces 47 (2): 132-139. [ Links ]

Jones, M., and H. Rawson. 1979. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency, and osmotic potential in sorghum. Physiol. Plant. 45: 103-111. [ Links ]

Kusaka, M., A. García, and T. Fujimura. 2005. The maintenance of growth and turgor in pearl millet (Pennisetum glaucum L.) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci. 168:1-14 [ Links ]

Lilley, M., and M. M. Ludlow. 1998. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crop Res. 48: 185-197. [ Links ]

Maurel, C., and M.J. Chrispeels. 2001. Aquaporins, a molecular entry into plant water relations. Plant Physiol. 125: 135-138. [ Links ]

Michigan State University. 1988. MSTAT-C. A software program for the design, management and analysis of agronomic research experiments. In: R. F. Freed (ed.). Department of Crop Soil Sciences and Department of Agricultural Economic. Michigan State University. Michigan, USA. 386 p. [ Links ]

Moinuddin, J., and R. Khanna-Chopra. 2004. Osmotic adjustment in Chickpea in relation to seed yield and yield parameters. Crop Sci. 44:449-455. [ Links ]

Morgan, J. M. 1977. Differences in osmoregulation between wheat genotypes. Nature 270: 234-235. [ Links ]

Morgan, J. M. 1983. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust. J. Agric. Res. 34: 607-614. [ Links ]

Morgan, J. M. 1984. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. 35: 299-319. [ Links ]

Morgan, J. M. 1995. Growth and yield of wheat lines with different osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crop Res. 40: 145-152. [ Links ]

Morgan, J. M., and A. G. Condon. 1986. Water use, grain yield and osmoregulation in wheat. Aust. J. Plant Physiol. 13: 523-532. [ Links ]

Munns, R. 1988. Why measure osmotic adjustment? Aust. J. Plant Physiol. 15: 717-726. [ Links ]

Santamaria, J. M., M. M. Ludlow, and S. Fukai. 1990. Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water limited conditions I. Water stress before anthesis. Aust. J. Agric. Res. 41: 52-65. [ Links ]

Santibañez, F., and J.M. Uribe. 1990. Atlas Agroclimático de Chile Regiones V y Metropolitana. Universidad de Chile. Facultad de Ciencias Agrarias y Forestales. Santiago, Chile. 65 p. [ Links ]

Schollander, P. F., H. T. Hammel H. T, E. D. Bradstreet, and E. A. Hemmingsen. 1965. Sap pressure in vascular plants. Science 148: 339-346. [ Links ]

Turner, N. C., and M. M. Jones. 1980. Turgor maintenance by osmotic adjustment. A review and evaluation. In: Adaptation of Plants to Water and High Temperature Stress. Turner N. C., and P. K. Kramer (eds). Willey Interscience Publication. New York, NY. pp: 38-42. [ Links ]

Zonia, L., and T. Munnik. 2004. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipids signals in Tobacco pollen tubes. Plant Physiol. 134: 813-823. [ Links ]

Received: November 2005; Accepted: September 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons