SciELO - Scientific Electronic Library Online

 
vol.40 número2Repelencia alimenticia de extractos de éter etílico de nim (Azadirachta indica) en arroz palay, para el control del tordo ojirrojo (Molothrus aeneus)Evaluación de boldo (Peumus boldus Molina) y cal para el control de Sitophilus zeamais Motschulsky índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.40 no.2 Texcoco mar./abr. 2006

 

Protección Vegetal

Phytophthora infestans (Mont.) de Bary. I. especificidad hospedero-patógeno y componentes de resistencia

Héctor Lozoya-Saldaña1 

Leonel Guzmán-Galindo2 

Sylvia Fernández-Pavia3 

Niklaus J. Grünwald4 

Elaine McElhinny5 

1Departamento de Fitotecnia. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México. (lozoya@correo.chapingo.mx)

2Departamento de Parasitología. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México.

3Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. Tarímbaro, Michoacán.

4U. S. Department of Agriculture. Agricultural Research Service. 3420 NW Orchard Avenue, Corvalis, OR 97330, USA.

5College of Agriculture and Plant Sciences. Cornell University. 14853. Ithaca, N. Y. USA.


Resumen

La identidad molecular de aislamientos de Phytophthora infestans que infectan a la papa en el valle de Toluca, México, está documentada. No obstante, la relación de los genotipos de P. infestans con la resistencia genética del hospedante es incierta. Para identificar la potencial especificidad hospedero-patógeno, a cepas del oomiceto obtenidas de cinco variedades de papa con diferentes niveles de resistencia se les comparó respecto a su tipo de cruzamiento (TC), el genotipo para las isoenzimas glucosa-6-fosfato isomerasa (Gpi) y peptidasa (Pep), y su sensibilidad al metalaxil. También se evaluó la identidad de los componentes de resistencia del hospedante y la especificidad en la interacción hospedero-patógeno dos veces en hojas desprendidas en el laboratorio y una vez en hojas adheridas en el invernadero en tres de las variedades. No predominó algún tipo de cruzamiento en relación con el grado de resistencia genética de los hospedantes (frecuencia A1:A2; Alpha, susceptible: 1:1.6; Rosita, resistente, 1:0.75; Norteña, resistente: 1:0.9; Monserrat, resistente: 1:2; Michoacán, resistente: 1:0.20). Se identificaron 18 combinaciones de TC-isoenzimas de 97 aislamientos. Todos han sido previamente reportados. Los genotipos multilocus más comunes (TC, Gpi, Pep) fueron A1, 86/100, 100/100 (37% de la población total) y A2, 86/100, 100/100 (14%), que representaron 66% de la población de P. infestans obtenida de las variedades Michoacán y Monserrat. El grado de sensibilidad al metalaxil fue más bajo con respecto a estudios previos. No se encontró relación entre la frecuencia de genotipos del patógeno y el nivel de resistencia genética del hospedante. El aislamiento de Rosita fue el más agresivo, induciendo la mayor área foliar dañada, en laboratorio e invernadero, así como la mayor esporulación en invernadero. El aislamiento de Alpha, que produjo la mayor cantidad de esporangios en el laboratorio, fue el segundo en este aspecto en el invernadero. Hubo mayor agresividad de los aislamientos de las variedades resistentes y se observó limitada especificidad hospedero-patógeno en Alpha y Rosita. La supresión en el área de la lesión y en la esporulación fueron los componentes de resistencia del hospedante identificados solamente para la variedad Norteña.

Palabras clave: Compatibilidad; isoenzimas; resistencia a metalaxil; resistencia genética; especificidad hospedero-patógeno

Abstract

The molecular identity of Phytophthora infestans strains infecting potatoes in the Toluca Valley has been documented. Nevertheless, the relationship of the P. infestans genotypes to the host’s genetic resistance is unclear. In order to identify potential host-pathogen specificity, isolates of the oomycete obtained from five potato varieties with differing levels of disease resistance were compared regarding mating type (MT), isozyme genotype for glucose-6-phosphate isomerase (Gpi) and peptidase (Pep), and sensitivity to metalaxyl. Also, host resistance components and specificity on the host-pathogen interaction were assessed twice in detached leaves in the laboratory and once in attached leaves in the greenhouse for three of the varieties. No mating type predominated relative to host genetic resistance (frequency of A1:A2; Alpha, susceptible: 1:1.6; Rosita, resistant: 1:0.75; Norteña, resistant: 1:0.9; Monserrat, resistant: 1:2; Michoacán, resistant: 1:0.20). Eighteen MT-isozyme combinations were identified from 97 isolates. All of them have been previously reported. The most common multilocus genotypes (MT, Gpi, and Pep) were A1, 86/100, 100/100 (37% of the whole population) and A2, 86/100, 100/100 (14%). Both genotypes represented 66% of the P. infestans population obtained from cvs. Michoacán and Monserrat. The level of metalaxyl sensitivity was lower relative to the levels reported in previous studies. A relationship between frequency of pathogen genotypes and level of host genetic resistance was not observed. The isolate from Rosita was the most aggressive. It resulted in the largest lesion area in the laboratory and in the greenhouse, and showed the highest sporulation in the greenhouse. The isolate from Alpha, which showed the highest sporulation in the laboratory, was second in sporulation under greenhouse conditions. Aggressiveness was higher in isolates obtained from resistant varieties and only limited host-pathogen specificity was observed in cvs. Alpha and Rosita. Suppression of lesion area and sporulation were the host resistance components identified only for the variety Norteña.

Key words: Compatibility; isozymes; metalaxyl resistance; genetic resistance; host-pathogen specificity

LITERATURE CITED

Birham, R. K., and B. P. Singh. 1995. Path-coefficient analyses and genetic parameters of the components of field resistance of potatoes to late blight. Ann. Appl. Biol. 127: 353-362. [ Links ]

Cañizales, C. A., and G. A. Forbes. 1995. Foliage resistance to Phytophthora infestans in Ecuadorian national collection of Solanum phureja ssp. phureja. Pot. Res. 38: 3-10. [ Links ]

Colon, T. L., D. J. Budding, L. C. P. Keizer, and M. M. J. Pieters. 1995. Components of resistance to late blight (Phytophtora infestans) in eight South American Solanum species. Eur. J. Plant Pathol. 101: 441-456. [ Links ]

Daayf, H. W. F., G. Mahuku, and R. D. Peters. 2001. Relationships between pathotypes and RAPDs, Gpi-allozyme patterns, mating types, and resistance to metalaxyl of Phytophthora infestans in Canada in 1997. Amer. J. Potato Res. 78: 129-139. [ Links ]

Deahl, K. L., S. P. Demuth, S. L. Sinden, and A. Rivera-Peña. 1995. Identification of mating types and metalaxyl resistance in north american populations of Phytophthora infestans. Amer. Potato J. 72: 35-49. [ Links ]

Flier, W. G., N. J. Grünwald, L. P. N. M. Kroon, A. K. Sturbaum, T. B. M. van den Bosch, E. Garay-Serrano, H. Lozoya-Saldaña, W. E. Fry, and L. J. Turkensteen. 2003. The population structure of Phytophthora infestans from the Toluca valley of Central México suggests genetic differentiation between populations from cultivated potato and wild Solanum spp. Phytopathology 93: 382-390. [ Links ]

Flores-Gutierrez, F. X., and M. Cadena-Hinojosa. 1996. Evaluation of horizontal resistance and effects of R-Genes in ten mexican cultivars against potato late blight (Phytophthora infestans) under natural conditions in the central plateau of México. Rev. Mex. Fitopatol. 14: 97-102. [ Links ]

Goodwin, B. S., L. J. Spielman, J. M. Matuszak, S. N. Bergeron, and W. E. Fry. 1992. Clonal diversity and genetic differentiation of Phytophthora infestans populations in northern and Central Mexico. Phytopathology 82: 955-961. [ Links ]

Goodwin, B. S., E. R. Sneider, and W. E. Fry. 1995. Use of celluloseacetate electrophoresis for rapid identification of alloenzyme genotypes of Phytophthora infestans. Plant Dis. 79: 1181-1185. [ Links ]

Grünwald, N. J., W. G. Flier, A. K. Sturbaum, S. E. Garay, T. B. M. Van den Bosch, C. D. Smart, J. M. Matuszak, S. H. Lozoya, L. J. Turkensteen, and W. E. Fry. 2001. Population structure of Phytophthora infestans in the Toluca Valley Region of Central Mexico. Phytopathology 91: 882-890. [ Links ]

Grünwald, N. J., M. A. Cadena-Hinojosa, O. Rubio-Covarrubias, A. Rivera-Peña, J. S. Niederhauser, and W. E. Fry. 2002a. Potato cultivars from the Mexican National Program: Sources and durability of resistance against late blight. Phytopathology 92: 688-693. [ Links ]

Grünwald, N. J., G. Romero-Montes, H. Lozoya-Saldaña, O. A. Rubio-Covarrubias, and W. E. Fry . 2002b. Potato late blight management in the Toluca Valley: Field validation of Sim Cast modified for cultivars with high field resistance. Plant Dis. 86: 1163-1168. [ Links ]

Hebert, N. P. D., and J. M. Beaton. 1989. Methodologies for Alloenzyme Analysis using Cellulose Acetate Electrophoresis. A practical handbook. Helena Laboratories. Guelph, Ontario. 32 p. [ Links ]

Judelson, H. S. 1996. Genetic and physical variability at the mating type locus of the oomycete, Pytophthora infestans. Genetics 144: 1005-1013. [ Links ]

Kato, M., E. S. Mizubuti, S. B. Goodwin, and W. E. Fry. 1997. Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United States. Phytopathology 87: 973-980. [ Links ]

Lozoya-Saldaña, H., M. T. Colinas-León, M. S. Cervantes-Ramírez, and J. García-Martínez. 1997. Potato tuber isozymes in cellulose acetate gel electrophoresis. Agrociencia 31: 339-343. [ Links ]

Lozoya-Saldaña, H., N. Grünwald, E. Garay-Serrano, A. Sturbaum-Abud, and Ch. Brown. 2003. Population substructuring of Phytophthora infestans on American potato clones in the Toluca Valley, México. Acta Horticulturae 619: 183-188. [ Links ]

Matuszak, J. M., E. J. Fernández, W. K. Gu, G. M. Villarreal, and W. E. Fry. 1994. Sensitivity of Phytophthora infestans populations to metalaxyl in Mexico: Distribution and dynamics. Plant Dis. 78: 911-916. [ Links ]

Mizubuti, S. G. E., and W. E. Fry. 1998. Temperature effects on developtmental stages of isolates from three clonal lineages of Phytophthora infestans. Phytopathology 88: 837-843. [ Links ]

Oijen, M. V. 1992. Selection and use of a mathematical model to evaluate components of resistance to Phytophthora infestans in potato. Neth. J. Plant Pathol. 98: 192-202. [ Links ]

Robinson, R. 1996. Return to Resistance: Breeding Crops to Reduce Pesticide Dependence. Ag. Access, Davis, CA, USA. 480 p. [ Links ]

Thompson, W. T. 1985. Agricultural Chemicals. Book IV: Fungicides. Thompson Publications. Fresno, CA, USA. 181 p. [ Links ]

Tooley, P. W., W. E. Fry, and G. M. J. Villarreal. 1985. Isozyme characterization of sexual and asexual Phytophthora infestans populations. J. Hered. 76: 431-435. [ Links ]

Tooley, P. W., J. A. Sweigard, and W. E. Fry. 1986. Fitness and virulence of Phytophthora infestans isolates from sexual and asexual populations. Phytopathology 76: 1209-1213. [ Links ]

Recibido: Enero de 2005; Aprobado: Octubre de 2005

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License