SciELO - Scientific Electronic Library Online

 
vol.27 número3Uso de retardadores de crecimiento vegetal en plántulas de jitomate (Solanum lycopersicum L.)Estudio de la endogamia en tomate de cáscara (Physalis ixocarpa Brot. ex Horm.) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Chapingo. Serie horticultura

versão On-line ISSN 2007-4034versão impressa ISSN 1027-152X

Rev. Chapingo Ser.Hortic vol.27 no.3 Chapingo Set./Dez. 2021  Epub 31-Jan-2022

https://doi.org/10.5154/r.rchsh.2021.01.002 

Scientific articles

Rice husk biochar as a substrate for growth of cucumber seedlings

Carlos Alberto Pérez-Cabrera1 
http://orcid.org/0000-0001-6852-9398

Porfirio Juárez-López1  * 
http://orcid.org/0000-0002-4241-1110

José Anzaldo-Hernández2 
http://orcid.org/0000-0002-2300-6195

Irán Alia-Tejacal1 
http://orcid.org/0000-0002-2242-2293

Salomé Gayosso-Rodríguez3 
http://orcid.org/0000-0001-6023-2469

Eduardo Salcedo-Pérez4 
http://orcid.org/0000-0002-5292-3099

Dagoberto Guillén-Sánchez1 
http://orcid.org/0000-0001-5958-4969

Rosendo Balois-Morales5 
http://orcid.org/0000-0002-4835-5631

Lourdes G. Cabrera-Chavarría6 
http://orcid.org/0000-0001-5223-0295

1Universidad Autónoma del Estado de Morelos. Av. Universidad, núm. 1001, Cuernavaca, Morelos, C. P. 62210, MÉXICO.

2Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierías. Blvd. Marcelino García Barragán, núm. 1421, Esquina Calzada Olímpica, Guadalajara, Jalisco, C. P. 44430, MÉXICO.

3Universidad Juárez Autónoma de Tabasco. Carretera Villahermosa-Teapa km 25, Villahermosa, Tabasco, C. P. 86298, MÉXICO.

4Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. Ramón Padilla Sánchez, núm. 2100, Nextipac, Zapopan, Jalisco, C. P. 45200, MÉXICO.

5Universidad Autónoma de Nayarit. Ciudad de la Cultura Amado Nervo, Blvd. Tepic-Xalisco s/n, Tepic, Nayarit, C. P. 63000, MÉXICO.

6Universidad de Guadalajara, Centro Universitario de Tonalá. Av. Nuevo Periférico, núm. 555, Ejido San José Tateposco, Tonalá, Jalisco, C. P. 48525, MÉXICO.


Abstract

Biochar is a carbon-rich material derived from plant residues and obtained by thermochemical techniques in an oxygen-limited environment or in the absence of it. The aim was to evaluate the physical properties of mixtures of rice husk biochar as a substrate component and their effect on the growth of cucumber seedlings. The treatments were: rice husk biochar (BC) and commercial peat moss (T; Sunshine mix 3), as well as mixtures of both in different proportions (20:80, 40:60, 60:40 and 80:20 %, respectively). For physical characterization, particle size, bulk density, total porosity, aeration porosity and water-holding porosity were evaluated. Additionally, nutrient concentration was determined. To evaluate the effect of biochar on cucumber seedling growth, stem length, fresh weight of aerial and root biomass, leaf area, dry weight of aerial and root biomass, and relative chlorophyll content (SPAD readings) were considered. It was found that the addition of up to 40 % BC to the universal growth medium (peat moss) does not alter the physical properties of total porosity, aeration porosity, and water-holding porosity; furthermore, the growth of cucumber seedlings in a 20 % BC mixture is similar in stem length, fresh biomass, dry biomass and leaf area to seedlings grown with 100 % peat moss.

Keywords Cucumis sativus; hydrothermal carbonization; growing media; physical and chemical properties; soilless culture

Resumen

El biocarbón es un material rico en carbono derivado de residuos vegetales y que se obtiene mediante técnicas termoquímicas en un ambiente limitado de oxígeno o en ausencia de éste. El objetivo fue evaluar las propiedades físicas de mezclas de biocarbón de cascarilla de arroz como componente de sustrato y su efecto en el crecimiento de plántulas de pepino. Los tratamientos fueron: biocarbón de cascarilla de arroz (BC) y turba comercial (T; Sunshine mix 3), así como mezclas de ambos en diferentes proporciones (20:80, 40:60, 60:40 y 80:20 %, respectivamente). Para la caracterización física, se evaluó la granulometría, la densidad aparente, la porosidad total, la porosidad de aireación y la porosidad de humedad. Adicionalmente, se determinó la concentración nutrimental. Para evaluar el efecto del biocarbón en el crecimiento de plántulas de pepino se consideró la longitud de tallo, el peso fresco de biomasa aérea y de raíz, el área foliar, el peso seco de biomasa aérea y de raíz, y el contenido relativo de clorofila (lecturas SPAD). Se encontró que la adición de hasta 40 % de BC al medio de crecimiento universal (turba) no altera las propiedades físicas de porosidad total, porosidad de aireación y porosidad de retención de humedad; además, el crecimiento de plántulas de pepino en mezcla de BC al 20 % es similar en longitud de tallo, biomasa fresca, biomasa seca y área foliar a las plántulas cultivadas con 100 % de turba.

Palabras clave Cucumis sativus; carbonización hidrotérmica; medios de crecimiento; propiedades físicas y químicas; cultivo sin suelo

Introduction

Biochar is a carbon-rich material derived from plant residues that is obtained by thermochemical techniques in a limited-oxygen environment or in the absence of it (Huang & Gu, 2019; Velázquez-Maldonado et al., 2019). This material is mainly generated in order to obtain benefits such as a soil amendment (Medina-Orozco & Medina-Orozco, 2017; Sánchez-Pilcorema, Condoy-Gorotiza, Sisalima-Morales, Barrezueta- Unda, & Jaramillo-Aguilar, 2020), an increase in crop productivity (Escalante-Rebolledo et al., 2016; Zahid, Iftikhar, Ahmad, & Gul, 2018), an improvement in the colonization rate of mycorrhizal fungi and an increase in microbial activity (Singh, Singh, & Purakayastha, 2019; Zhang et al., 2016). Likewise, the use of biochar has been reported in seedling production (Iglesias-Abad, Alvarez-Vera, Vázquez, & Salas-Macías, 2020) and in the production of containerized crops (Blok et al., 2017; Guo, Niu, Starman, Volder, & Gu, 2018; Huang & Gu, 2019).

Several studies report that biochar’s physical and chemical characteristics mainly depend on the raw material, the technique used, the heating interval, and the temperature and pressure of the reactor (Escalante-Rebolledo et al., 2016). Therefore, it is important to characterize biochar’s physical and chemical properties in order to explain their effects when using it as a soil amendment or as an alternative to reduce the use of peat moss as a substrate.

Biochar has been shown to act as a potential improver of both soil and substrates, since its addition positively affects some physical and chemical properties. In this sense, Alburquerque et al. (2014) and Mathias-Schlegel, Ibrahim, Kipping-Rössel, Ortiz-Laurel, and Fras (2018) report that biochar reduces bulk density and increases total porosity and water-holding capacity of soil (Blanco-Canqui, 2017; Wacal et al., 2019) and substrates (Blok et al., 2017), favoring seedling development and growth. Interactions between physical and chemical properties determine the fertility of the substrate or growth medium. These interactions can be modified with the addition of biochar and favor plant growth (Sánchez-Reinoso, Ávila-Pedraza, & Restrepo-Díaz, 2020).

One of the main functions of substrates or growing media used in seedling production is to provide physical support, as well as to provide an adequate balance of air, water and nutrients for proper root growth (Pire & Pereira, 2003). The physical characteristics (such as aeration porosity and water-holding capacity) and chemical ones (pH, cation exchange capacity and nutrient concentration) of a substrate influence root growth and function, and can therefore positively or negatively affect seedling quality (García, Alcántar, Cabrera, Gavi, & Volke, 2001). In Mexico, there is no research on the effect of biochar on the production of seedlings of horticultural species. Therefore, the aim of this work was to evaluate the physical properties of rice husk biochar (BC) mixtures as a substrate component and their effect on the growth of cucumber seedlings.

Materials and methods

The research work was divided into two stages: 1) laboratory stage, which consisted of the physical characterization of the BC, peat moss and the mixture of both materials, as well as the evaluation of the nutrient concentration of the individual materials (BC and peat moss), and 2) greenhouse stage, in which the individual materials and mixtures of them were evaluated in the growth of cucumber seedlings.

Biochar production

Rice husks obtained from a commercial mill in Cuautla, Morelos, from the spring-summer 2019 harvest, were used to make the BC. The technique used to make it was hydrothermal carbonization (HTC) at 200 °C with 10 % citric acid as a catalyst (Velázquez-Maldonado et al., 2019).

Treatments

The individual materials used were rice husk biochar (BC) and commercial peat moss (T; Sunshine mix 3), which were mixed under different proportions: 20:80, 40:60, 60:40 and 80:20 % (v/v), respectively. The treatments were designated as: T1 = peat moss (control), T2 = BC, T3 = 20:80 % mix, T4 = 40:60 % mix, T5 = 60:40 % mix and T6 = 80:20 % mix.

Physical characterization

Granulometry. In an electric sieve shaker (MONTINOX®), with sieves (FIC®) of number 8, 10, 12, 16, 20 and 50 (2.38, 1.68, 1.41, 1.15, 0.86 and 0.24 mm opening, respectively), a sample composed of 800 cm3 of each treatment was placed for 3 min; subsequently, the material retained on each sieve was weighed and the percentage by particle size was calculated.

Bulk density (BD). For this determination, 232-mL polystyrene permeameters were used. Samples were saturated with running water for 24 h, placed in the permeameters and dried in an oven at 65 °C until constant weight (Gayosso-Rodríguez, Villanueva-Couoh, Estrada-Botello, & Garruña, 2018b).

Total porosity (TP), aeration porosity (AP) and water-holding porosity (WHP) were determined using the procedure described by Landis, Tinus, McDonald, and Barnett (1990).

Nutrient concentration

N was determined for the individual materials (biochar and peat moss) by the micro Kjedhal method and P with the vanadate-molybdate-yellow method. Total K, Ca and Na content was obtained by means of the flamometry technique, and total Mg by atomic absorption spectrophotometry according to the official Mexican standard PROY-NOM-021-RECNAT-2000 (Diario Oficial de la Federación [DOF], 2000).

Seedling growth

The experiment was carried out in June 2019 in a tunnel-type greenhouse belonging to the Faculty of Agricultural Sciences of the Universidad Autónoma del Estado de Morelos, located in Cuernavaca, Morelos, Mexico (18° 58’ 51” N and 99° 13’ 55” W, at 1,866 m a. s. l.). Temperature and relative humidity were monitored with an environmental data logger (U12, HobWxo®). The average greenhouse temperature was 28.5 °C and the average relative humidity was 65 %. Treatments were evaluated in American-type ‘Thunderbird’ (Seminis®) cucumber seedlings in 200-cavity polystyrene germination trays, with each cavity having a capacity of 20.5 mL. Seedlings were irrigated with water purified by reverse osmosis.

At 23 days after planting, stem length (ST), fresh weight of aerial biomass (FWAB), fresh weight of root biomass (FWRB), leaf area (LA), dry weight of aerial biomass (DWAB), dry weight of root biomass (DWRB) and relative chlorophyll content were recorded. FWAB and FWRB were obtained with a scale (Ohaus®) and LA with a leaf area meter (LI-3100C, LI-COR®, USA). For DWAB and DWRB, a circulating air oven (Pro1002498, Luzeren®) was used at 70 °C until constant weight, and a portable SPAD meter (502 Plus, Minolta®) was used to determine chlorophyll content (SPAD readings).

Experimental design and statistical analysis

In the first stage, a completely randomized design with three replicates was used to determine the physical and chemical properties of the substrate mixtures evaluated. In the second stage, a randomized block experimental design with six replicates and ten seedlings as the experimental unit was used. To ensure normality, the data expressed as a percentage were transformed with the square root of the arcsine. With the exception of the data on substrate physical property variables, data were subjected to analysis of variance and, when there were statistical differences, a Tukey's comparison of means test (P ≤ 0.05) was performed. Likewise, to determine if the physical properties of the substrates had a relationship with seedling growth, a Pearson correlation analysis was performed with 18 pairs of values and significant correlations (P ≤ 0.05) were reported, this by means of the SAS program (SAS Institute, 2004).

Results and discussion

Physical properties

In relation to the cumulative percentages of particle size up to 0.86 mm, T3 (20:80 mix) presented the highest value (63.31 %), while T1 (peat moss) had the lowest value (41.44 %) (Table 1). In sizes from 0.86 to 2.38 mm, the highest distribution of particles was concentrated in T2 (BC) with 55.26 %, and T3 had the lowest distribution (32.38 %). The highest percentage of particles larger than 2.38 mm was found in T1 (7.74 %), and the lowest value was in T2 (0.50 %). It is important to note that reports on BC particle size are scarce; however, the values of the present study contrast with those reported by Pérez-Salas, Tapia-Fernández, Soto, and Benjamin (2013) in beechwood (Gmelina arborea) biochar, since they obtained a greater distribution of particles from 0.24 to 0.84 mm with 57 %, followed by 23 % of particles larger than 2 mm and 20 % of particles smaller than 2 mm. This may be due to the composition of the plant material used and the biochar production process.

Table 1 Particle size distribution (percentage based on weight) in mixtures of peat moss (T) and rice husk biochar (BC). 

Treatments Particle size (mm)
< 0.24 0.24 - 0.86 0.86 - 1.15 1.15 - 1.68 1.68 - 2.38 > 2.38
T1 (T) 7.50 33.94 19.45 21.8 9.54 7.74
T2 (BC) 7.31 36.90 20.16 30.7 4.40 0.50
T3 (BC:T, 20:80) 23.99 39.32 12.08 16.4 3.90 4.35
T4 (BC:T, 40:60) 19.62 38.26 13.31 20.5 4.39 3.88
T5 (BC:T, 60:40) 16.60 37.78 14.71 24.4 3.88 2.65
T6 (BC:T, 80:20) 11.96 34.69 16.17 30.0 5.47 1.67

Cabrera (1999) states that the components of substrates or mixtures should be made up of particles with sizes from 0.5 to 4 mm, with a percentage ≤ 20 % for sizes ≤ 0.5 mm, ≥ 60 % in sizes from 0.5 to 2 mm and ≤ 20 % in sizes > 2 mm. Gayosso-Rodríguez, Borges-Gómez, Villanueva-Couoh, Estrada-Botello, and Garruña (2018a) point out that percentages higher than 20 % in particles with sizes ≤ 0.5 mm affect the aeration capacity in substrates because it decreases with particle size.

In general, it was observed that the particle distribution was affected by the combination of both materials. That is, as the proportion of BC decreased, the cumulative percentages of particles < 0.86 mm and > 2.38 mm increased, while particles in the range of 0.86 to 2.38 increased as the proportion of BC increased.

TP increased with decreasing BC content in the mixture. Treatments T1, T3 and T4 were significantly different (P ≤ 0.05) from the rest of the treatments in TP and WHP (Table 2). Although no statistical differences were observed among T5, T6 and T2, the last presented the lowest values ​​of TP and WHP (76.25 and 63.23 %, respectively). The results of the present study were higher than those reported by Webber, White, Spaunhorst, Lima, and Petrie (2018), who in mixtures of peat moss (Sun Gro Horticulture) and sugarcane bagasse biochar (25:75, 50:50 and 75:25 %) observed that the pore space ranged from 73.13 to 76.79 %, obtaining the largest pore space with the lowest biochar mixture. Webber, White, Spaunhorst, and Petrie (2017) report that the pore space ranged from 59.98 to 64.56 % with mixtures of peat moss (Sun Gro Horticulture) and sugarcane bagasse ash (25:75, 50:50 and 75:25). Regarding AP, the results ranged from 12.87 to 15.62 %, with no significant differences (P ≤ 0.05) among treatments.

Table 2 Comparison of means of the physical properties of peat moss (T), rice husk biochar (BC) and mixtures of both. 

Treatments TP AP WHP BD (g·cm-3)
(%)
T1 (T) 87.29 az 15.44 a 71.85 a 0.11 d
T2 (BC) 76.25 b 13.01 a 63.23 b 0.20 a
T3 (BC:T, 20:80) 86.25 a 15.62 a 70.62 a 0.12 c
T4 (BC:T, 40:60) 85.07 a 13.01 a 72.05 a 0.15 c
T5 (BC:T, 60:40) 78.35 b 12.87 a 65.48 ab 0.17 b
T6 (BC:T, 80:20) 77.98 b 13.90 a 64.09 b 0.20 a
CV 1.32 7.96 1.76 4.51

CV = coefficient of variation; TP = total porosity; AP = aeration porosity; WHP = water-holding porosity; BD = bulk density. zMeans with the same letter within each column do not differ statistically (Tukey, P ≤ 0.05).

In relation to TP in organic substrates, Morales-Maldonado and Casanova-Lugo (2015) state that it should be greater than 85 %. In this study, treatments T3 and T4 comply with that recommendation, which generates a balance between the water-air ratio (AP and WHP). On the other hand, treatments T1, T3 and T4 had significant differences in WHP compared to T2 and T6. In this regard, Webber et al. (2017) point out that decreasing the percentages of sugarcane bagasse ash mixed with peat moss (Sun Gro Horticulture) (75:25 % peat moss:ash) results in the highest pore space, water saturation and field capacity values. In contrast, Webber et al. (2018) report that the 75:25 % peat moss:sugarcane bagasse biochar mixture increased pore space, but decreased water saturation and field capacity properties in the substrates.

Water holding in a substrate is not only determined by particle size, but also by the arrangement, shape and compaction of the particles, since they generate different types of pores (Gutiérrez-Castorena, Hernández-Escobar, Ortiz-Solorio, Anicua-Sánchez, & Hernández-Lara, 2011). For this reason, particles > 1 mm favor the formation of larger pores (Morales-Maldonado & Casanova-Lugo, 2015), and, in this study, peat moss was the material with the highest amount of particles > 1 mm, so increasing the proportion of peat moss in the mixture also increased the TP. Large pores allow the accommodation of small intra- and interparticle particles, which generates pores that contribute to water conservation (Anicua-Sánchez et al., 2009).

Most biochar-related research focuses on moisture content, ash, fixed carbon, volatility, and surface area as physical properties (Ding et al., 2017; Herrera et al., 2018; Rodríguez, Lemos, Trujillo, Amaya, & Ramos, 2019). However, Webber et al. (2018, 2017) report physical properties such as total porosity, water saturation and field capacity in sugarcane bagasse biochar and sugarcane bagasse ash mixed with peat moss (Sun Gro Horticulture) at different percentages (0, 25, 50, 75 and 100 %).

Regarding BD, differences (P ≤ 0.05) were found among treatments; T2 and T6 had the highest BD with 0.20 g·cm-3, while peat moss (T1) showed the lowest value with 0.11 g·cm-3. Pratiwi, Hillary, Fukuda, and Shinogi (2016) obtained results of approximately 0.18 g·cm-3 in rice husk biochar. On the other hand, Alburquerque et al. (2014) report a BD of 0.19, 0.25, 0.66, 0.72 and 0.74 g·cm-3 in different biochars made from wheat straw, pine woodchips, olive-tree pruning, olive stone, and almond shells, respectively. Webber et al. (2018), in sugarcane bagasse biochar, obtained a low BD (0.11 g·cm-3); however, peat moss (Sun Gro Horticulture) had a BD of 0.11 g·cm-3, equal to that found in this study. It is important to consider BD since, in addition to the effect it can have on plant growth, it can result in increased transportation and handling costs (Cabrera, 1999). A low BD is desirable to facilitate handling and transport of germination trays (Bracho, Pierre, & Quiroz, 2009).

Nutrient concentration

Differences (P ≤ 0.05) were found in the nutrient concentration of peat moss and BC in N, K, Ca, Mg and Na (Table 3). It was observed that the highest concentration of nutrient elements was found in peat moss, with the exception of P, which had no significant differences. These results may be due to the chemical composition of peat moss, since agricultural dolomite is added to it, which provides Ca and Mg and increases the availability of nutrients such as N, P and Ca (Calva & Espinosa, 2017).

Table 3 Comparison of means of the nutrient concentration of peat moss and rice husk biochar. 

Treatments N (%) P K Ca Mg Na
(mg·kg-1)
Peat moss 0.93 az 1971.53 a 12559.30 a 7541.10 a 24705.27 a 1208.89 a
Biochar 0.78 b 1993.23 a 3303.10 b 2218.41 b 6887.09 b 835.58 b
CV 5.56 5.84 13.18 13.63 7.50 9.13
HSD 0.11 262.64 2369.80 1508.30 2687.10 211.57

CV = coefficient of variation; HSD = honestly significant difference. zMeans with the same letter within each column do not differ statistically (Tukey, P ≤ 0.05).

The nutrient content of the BC was higher than that reported by Velázquez-Maldonado et al. (2019) (with values of 0.32 % N, 504 mg·kg-1 P, 1,117 mg·kg-1 K and 983 mg·kg-1 Mg), except for Ca (10,988 mg·kg-1). Although the rice husks used in both studies were extracted from the same region of Cuautla, they were harvested in different years, which may have influenced the nutrient content of the biochar. On the other hand, the results obtained were lower than those reported by Cho et al. (2017): 12,050 mg·kg-1 P, 15,800 mg·kg-1 Ca, 10,380 mg·kg-1 Mg and 7,340 mg·kg-1 Na, except for the content of N and K. In this case, the biochar was made using a wood roaster at temperatures ranging from 200 to 250 °C.

The differences in the nutrient concentrations of the different biochars could be influenced by the technique and temperature used in their preparation. In this regard, Bethancourt, James, Villarreal, and Marin-Calvo (2019) state that by increasing the temperature from 714 to 935 °C, in the gasification technique, the nutrient concentration of biochar increased from 0.30 to 0.50 % in N, from 6,000 to 10,000 mg·kg-1 in P, from 8,000 to 10,000 mg·kg-1 in K and from 236.7 to 524.0 mg·L-1 in Mn. Therefore, it can be said that the properties of biochars are also affected by production techniques, raw materials, heat ranges, temperature, reactor pressure and the use of catalysts (Bento et al., 2019; Escalante-Rebolledo et al., 2016; Huang & Gu, 2019).

Seedling growth

The growth of cucumber seedlings in treatments T1 and T3 was higher (P ≤ 0.05) than in the rest of the treatments (Table 4), with an increase of 81.65 and 84.81 % in SL, of 136.61 and 119.44 % in FWAB, of 106.96 and 105.90 % in LA, and of 166.99 and 145.08 % in DWAB, respectively. On the other hand, seedlings under the T2 treatment presented the lowest values in all variables evaluated.

Table 4 Comparison of means of the effect of peat moss (T) and rice husk biochar (BC) on the growth of cucumber seedlings.  

Treatments SL (cm) FWAB (mg) LA (cm2) DWAB (mg) DWRB (mg) SPAD
T1 (T) 2.87 az 902.67 a 9.81 a 176.67 a 40.83 ab 38.38 a
T2 (BC) 1.58 d 381.50 d 4.74 b 66.17 d 23.67 c 38.96 a
T3 (BC:T, 20:80) 2.92 a 837.17 a 9.76 a 162.17 a 51.00 a 42.38 a
T4 (BC:T, 40:60) 2.25 b 657.33 b 6.84 b 122.83 b 50.17 a 42.08 a
T5 (BC:T, 60:40) 2.15 bc 550.17 bc 6.58 b 102.00 bc 43.67 ab 41.65 a
T6 (BC:T, 80:20) 1.93 c 442.83 cd 5.66 b 85.33 cd 34.67 b 41.98 a
CV 6.26 13.41 4.18 14.91 14.35 6.76
HSD 0.25 148.04 2.31 31.22 10.25 4.85

SL = stem length; FWAB = fresh weight of aerial biomass; LA = leaf area; DWAB = dry weight of aerial biomass; DWRB = dry weight of root biomass; CV = coefficient of variation; HSD = honestly significant difference. zMeans with the same letter within each column do not differ statistically (Tukey, P ≤ 0.05).

Cho et al. (2017) found greater seedling height and higher root, stem and leaf dry weight in Zelkova serrata with 20 % rice husk biochar mixed with soil plus fertilization. These authors attributed their results to the physical and chemical properties of the biochar. Araméndiz-Tatis, Cardona-Ayala, and Correa-Álvarez (2013) report, in eggplant seedlings, that when using three mixtures of raw rice husk, in different combinations with alluvium, vermicompost and poultry manure (50:50:0:0, 40:40:20:0 and 40:40:0:20 %, respectively), the treatments with the highest rice husk proportion recorded the lowest values in growth and biomass production variables.

In DWRB, the highest value was obtained with treatment T3 (51 mg) and the lowest value with T2 (23.67 mg). These results may be due to the physical and chemical properties of BC (Tables 1, 2 and 3). Regarding SPAD units in leaves, no significant differences were found.

Correlation analysis

Table 5 summarizes the variables with the greatest association, where positive correlations (P ≤ 0.01) were detected between TP-SL, TP-FWAB, TP-LA, TP-DWAB, WHP-SL, WHP-FWAB, WHP-LA and WHP-DWAB. It was observed that treatments T1 and T3 had higher TP, so they had greater water-holding capacity and lower density, characteristics that favored the growth and development of the seedlings. Likewise, a positive correlation (P ≤ 0.05) was detected between AP-DWAB.

Table 5 Linear correlations (r) between soil physical properties and growth variables of cucumber seedlings. 

Variables Correlation coefficient (n = 18)
Total porosity - Stem length 0.82**
Total porosity - Fresh weight of aerial biomass 0.83**
Total porosity - Leaf area 0.67**
Total porosity - Dry weight of aerial biomass 0.81**
Total porosity - Dry weight of root biomass 0.56*
Aeration porosity - Fresh weight of aerial biomass 0.58*
Aeration porosity - Dry weight of aerial biomass 0.60**
Water-holding porosity - Stem length 0.73**
Water-holding porosity - Fresh weight of aerial biomass 0.65**
Water-holding porosity - Leaf area 0.66**
Water-holding porosity - Dry weight of aerial biomass 0.61**
Water-holding porosity - Dry weight of root biomass 0.58*
Bulk density - Stem length -0.84**
Bulk density - Fresh weight of aerial biomass -0.90**
Bulk density - Leaf area -0.84**
Bulk density - Dry weight of aerial biomass -0.91**
Bulk density - Dry weight of root biomass -0.66**

*, ** = significant for P ≤ 0.05 and P ≤ 0.01, respectively; n = number of pairs of values in the correlation.

On the other hand, negative correlations (P ≤ 0.01) were detected in BD-SL, BD-FWAB, BD-LA, BD-DWAB and BD-DWRB (Table 5). Treatments T1 and T3 had low values in BD, but produced plants with greater SL, FWAB, DWAB and DWRB. This indicates that a BD of 0.20 g·cm-3 has a negative impact on plant growth and development. In this regard, Gayosso-Rodríguez, Borges-Gómez, Villanueva-Couoh, Estrada-Botello, and Garruña-Hernández (2016) point out that the density of a substrate is diverse, and that porosity and water movement depend on it.

Conclusions

The addition of up to 40 % rice husk biochar to the universal growth medium (peat moss) does not alter physical properties (total porosity, aeration porosity and water-holding porosity). The growth of cucumber seedlings with a 20 % biochar mixture is similar in stem length, fresh biomass, dry biomass and leaf area with respect to seedlings grown under 100 % commercial peat moss; that is, rice husk biochar can be an alternative to partially replace commercial peat moss in the production of cucumber seedlings.

Acknowledgments

The first author thanks Mexico’s National Council of Science and Technology (CONACYT) for the scholarship granted for his Ph.D. studies (scholarship holder: 243072; CVU: 260303) in Agricultural Sciences and Rural Development.

References

Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., del Campillo, M. C., Gallardo, A., & Villar, R. (2014). Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16-25. doi: 10.1002/jpln.201200652 [ Links ]

Anicua-Sánchez, R., Gutiérrez-Castorena, M. C., Sánchez-García, P., Ortiz-Solorio, C., Volke-Halle, V. H., & Rubiños-Panta, E. (2009). Tamaño de partícula y relación micromorfológica en propiedades físicas de perlite y zeolite. Agricultura Técnica en México, 35(2), 147-156. Retrieved from http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=60812688002 Links ]

Araméndiz-Tatis, H., Cardona-Ayala, C., & Correa-Álvarez, E. (2013). Efecto de diferentes sustratos en la calidad de plántulas de berenjena (Solanum melongena L.). Revista Colombiana de Ciencias Hortícolas, 7(1), 55-61. doi: 10.17584/rcch.2013v7i1.2035 [ Links ]

Bento, L. R., Castro, A. J. R., Moreira, A. B., Ferreira, O. P., Bisinoti, M. C., & Melo, C. A. (2019). Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma, 334, 24-32. doi: 10.1016/j.geoderma.2018.07.034 [ Links ]

Bethancourt, G., James, A., Villarreal, J. E., & Marin-Calvo, N. (2019) Biomass carbonization -production and characterization of biochar from rice husk. International Engineering, Sciences and Technology Conference, 7. doi: 10.1109/iestec46403.2019.00016 [ Links ]

Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81, 687-711. doi: 10.2136/sssaj2017.01.0017 [ Links ]

Blok, C., van der Salm, C., Hofland-Zijlstra, J., Streminska, M., Eveleens, B., Regelink, I., Fryda, L., & Visser, R. (2017). Biochar for horticultural rooting media improvement: evaluation of biochar from gasification and slow pyrolysis. Agronomy, 7(1), 1-23. doi: 10.3390/agronomy7010006 [ Links ]

Bracho, J., Pierre, F., & Quiroz, A. (2009). Caracterización de components de sustratos locales para la produccion de plántulas de hortalizas en el estado de Lara, Venezuela. Bioagro, 21(2), 117-124. Retrieved from http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612009000200006Links ]

Cabrera, R. I. (1999). Propiedades, uso y manejo de sustratos de cultivo para la producción de plantas en maceta. Revista Chapingo Serie Horticultura, 5(1), 5-11. doi: 10.5154/r.rchsh.1998.03.025 [ Links ]

Calva, C., & Espinosa, J. (2017). Efecto de la aplicación de cuatro materiales de encalado en control de la acidez de un suelo de Loreto, Orellana. Siembra, 4(1), 110-120. doi: 10.29166/siembra.v4i1.505 [ Links ]

Cho, M. S., Meng, L., Song, J., Han, S. H., Bae, K., & Park, B. B. (2017) The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. Forest Science and Technology, 13(1), 25-30. doi: 10.1080/21580103.2017.1287778 [ Links ]

Diario Oficial de la Federación (DOF). (2000). Estudios, muestreos y análisis. Proyecto de norma oficial mexicana PROY-NOM-021-RECNAT-2000. México: Secretaría de Gobernación. Retrieved from http://dof.gob.mx/nota_detalle.php?codigo=756861&fecha=07/12/2001 [ Links ]

Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., & Zhou, L. (2017). Potential benefits of biochar in agricultural soils: A review. Pedosphere, 27(4), 645-661. doi: 10.1016/S1002-0160(17)60375-8 [ Links ]

Escalante-Rebolledo, A., Pérez-López, G., Hidalgo-Moreno, C., López-Collado, J., Campos-Alves, J., Valtierra-Pacheco, E., & Etchevers-Barra, J. D. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana, 34(3), 367-382. Retrieved from http://www.redalyc.org/articulo.oa?id=57346617009Links ]

García, C. O., Alcántar, G. G., Cabrera, R. I., Gavi, R. F., & Volke, H. V. (2001). Evaluación de sustratos para la producción de Epipremnum aureum y Spathiphyllum allisii cultivadas en maceta. Terra Latinoamericana , 19(3), 249-258. Retrieved from https://www.redalyc.org/pdf/573/57319306.pdfLinks ]

Gayosso-Rodríguez, S., Borges-Gómez, L., Villanueva-Couoh, E., Estrada-Botello, M. A., & Garruña, R. (2018a). Caracterización física y química de materiales orgánicos para sustratos agrícolas. Agrociencia, 52(4), 639-652. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952018000400639 [ Links ]

Gayosso-Rodríguez, S., Villanueva-Couoh, E., Estrada-Botello, M. A., & Garruña, R. (2018b). Caracterización físico-química de mezclas de residuos orgánicos utilizados como sustratos agrícolas. Bioagro , 30(3), 179-198. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2716/1698Links ]

Gayosso-Rodríguez, S., Borges-Gómez, L., Villanueva-Couoh, E., Estrada-Botello, M. A., & Garruña-Hernández, R. (2016). Sustratos para producción de flores. Agrociencia , 50(5), 617-631. http://www.redalyc.org/articulo.oa?id=30246698007Links ]

Guo, Y., Niu, G., Starman, T., Volder, A., & Gu, M. (2018). Poinsettia growth and development response to container root substrate with biochar. Horticulturae, 4(1), 2-14. doi: 10.3390/horticulturae4010001 [ Links ]

Gutiérrez-Castorena, M. C., Hernández-Escobar, J., Ortiz-Solorio, C. A., Anicua-Sánchez, R., & Hernández-Lara, M. E. (2011). Relación porosidad-retención de humedad en mezclas de sustratos y su efecto sobre variables respuesta en plántulas de lechuga. Revista Chapingo Serie Horticultura , 17(3), 183-196. Retrieved from https://www.redalyc.org/articulo.oa?id=60921383009Links ]

Herrera, E., Feijoo, C., Alfaro, R., Solís, J., Gómez, M., Keiski, R., & Cruz, G. (2018). Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (sapote). Scientia Agropecuaria, 9(4), 569-577. doi: 10.17268/sci.agropecu.2018.04.13 [ Links ]

Huang, L., & Gu, M. (2019). Effects of biochar on container substrate properties and growth of plants-A review. Horticulturae , 5(1), 2-25. doi: 10.3390/horticulturae50100147 [ Links ]

Iglesias-Abad, S., Alvarez-Vera, M., Vázquez, J., & Salas-Macías, C. (2020). Biochar de biomasa residual de eucalipto (Eucalytus globulus) mediante dos métodos de pirólisis. Manglar, 17(2), 105-111. doi: 10.17268/manglar.2020.016 [ Links ]

Landis, T. D., Tinus, R. W., McDonald, S. E., & Barnett, J. P. (1990). Containers and growing media. The container tree nursery manual. Washington D. C., USA: USDA Forest Service. [ Links ]

Mathias-Schlegel, M., Ibrahim, B., Kipping-Rössel, D., Ortiz-Laurel, H., & Fras, J. (2018). Generación de biocarbón a partir del material sólido en la hidrólisis aeróbico-microbiológica. Agroproductividad, 11(11), 27-33. doi: 10.32854/agrop.v11i11.1279 [ Links ]

Medina-Orozco, L. E., & Medina-Orozco, I. N. (2017). Prototipo autotérmico móvil para la producción de biocarbón con biomasa de esquilmos de aguacate. Terra Latinoamericana , 36(2), 121-129. doi: 10.28940/terra.v36i2.217 [ Links ]

Morales-Maldonado, E. R., & Casanova-Lugo, F. (2015). Mezclas de sustratos orgánicos e inorgánicos, tamaño de partícula y proporción. Agronomía Mesoamericana, 26(2), 365-372. doi: 10.15517/am.v26i2.19331 [ Links ]

Pérez-Salas, R. A., Tapia-Fernández, A. C., Soto, G., & Bemjamin, T. (2013). Efecto del biocarbón sobre Fusarium oxysporum f. sp. cubense y el desarrollo de plantas de banano (Musa AAA). Revista Electrónica de las Sedes Regionales de la Universidad de Costa Rica, 14(27), 66-100. Retrieved from https://www.scielo.sa.cr/pdf/is/v14n27/a04v14n27.pdfLinks ]

Pire, R., & Pereira, A. (2003). Propiedades físicas de componentes de sustratos de uso común en la horticultura del estado de Lara, Venezuela. Propuesta metodológica. Bioagro , 15(1), 55-64. Retrieved from http://www.redalyc.org/articulo.oa?id=85715107 [ Links ]

Pratiwi, E. P., Hillary, A. K., Fukuda, T, & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma , 277, 61-68. doi: 10.1016/j.geoderma.2016.05.006 [ Links ]

Rodríguez, A., Lemos, D., Trujillo, Y. T., Amaya, J. G., & Ramos, L. D. (2019). Effectiveness of biochar obtained from corncob for immobilization of lead in contaminated soil. Journal of Health & Pollution, 9(23), 1-10. doi: 10.5696/2156-9614-9.23.190907 [ Links ]

Sánchez-Pilcorema, S., Condoy-Gorotiza, A., Sisalima-Morales, P., Barrezueta-Unda, S., & Jaramillo-Aguilar, E. (2020). Uso de biocarbones en medios de cultivo para el crecimiento de Trichoderma spp. in vitro. Revista Metropolitana de Ciencias Aplicadas, 3(2), 66-72. Retrieved from https://remca.umet.edu.ec/index.php/REMCA/article/view/267Links ]

Sánchez-Reinoso, A. D., Ávila-Pedraza, E. A., & Restrepo-Díaz, H. (2020). Use of biochar in agriculture. Acta Biológica Colombiana, 25(2), 327-338. doi: 10.15446/abc.v25n2.79466 [ Links ]

SAS Institute. (2004). SAS/STAT users guide version 9.1. New York, USA: SAS Institute. [ Links ]

Singh, A., Singh, A. P., & Purakayastha, T. J. (2019). Characterization of biochar and their influence on microbial activities and potassium availability in an acid soil. Archives of Agronomy and Soil Science, 65(9), 1302-1315. doi: 10.1080/03650340.2018.1563291 [ Links ]

Velázquez-Maldonado, J., Juárez-López, P., Anzaldo-Hernández, J., Alejo-Santiago, G., Valdez-Aguilar, L. A., Alia-Tejacal, I., & Guillén-Sánchez, D. (2019). Concentración nutrimental de biocarbón de cascarilla de arroz. Revista Fitotecnia Mexicana, 42(2), 129-136. Retrieved from https://revfitotecnia.mx/index.php/RFM/article/view/31/20Links ]

Wacal, C., Ogata, N., Basalirwa, D., Handa, T., Sasagawa, D., Acidri, R., & Nishihara, E. (2019). Growth, seed yield, mineral nutrients and soil properties of sesame (Sesamum indicum L.) as influenced by biochar addition on upland field converted from paddy. Agronomy , 9(2), 55. doi: 10.3390/agronomy9020055 [ Links ]

Webber, C., White, P., Spaunhorst, D., & Petrie, E. (2017). Impact of sugarcane bagasse ash as an amendment on the physical properties, nutrient content and seedling growth of a certified organic greenhouse growing media. Journal of Agricultural Science, 9(7). doi: 10.5539/jas.v9n7p1 [ Links ]

Webber, C., White, P., Spaunhorst, D., Lima, I., & Petrie, E. (2018). Sugarcane biochar as an amendment for greenhouse growing media for the production of cucurbit seedlings. Journal of Agricultural Science , 10(2), 104-115. doi: 10.5539/jas.v10n2p104 [ Links ]

Zahid, Z., Iftikhar, S., Ahmad, K. S., & Gul, M. M. (2018). Low-cost and environmental-friendly Triticum aestivum derived biochar for improving plant growth and soil fertility. Communications in Soil Science and Plant Analysis, 49(22), 2814-2827. doi: 10.1080/00103624.2018.1546869 [ Links ]

Zhang, X., Luo, Y., Müller, K., Chen, J., Lin, Q., Xu, J., …& Wang, H. (2016). Research and application of biochar in China. Agricultural and Environmental Applications of Biochar: Advances and Barriers (pp. 377-407). USA: SSSA Special Publications. doi: 10.2136/sssaspecpub63.2014.0049 [ Links ]

Received: January 10, 2021; Accepted: March 27, 2021

*Corresponding author: porfirio.juarez@uaem.mx, porfiriojlopez@yahoo.com, tel. 777 103 34 26.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License