SciELO - Scientific Electronic Library Online

 
vol.48 número1Chemical Composition of the Epicuticular Wax of Cnidoscolus aconitifoliusStudy of the Influence of the Polyacetylene Main Chain Configuration and the Internal Stacking of Pendant Groups over the Optical and Photophysical Properties of trans and cis-Poly(1-pyrenylacetylene)s by UV-Vis and Fluorescence Spectroscopy índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista de la Sociedad Química de México

versión impresa ISSN 0583-7693

Rev. Soc. Quím. Méx vol.48 no.1 Ciudad de México ene./mar. 2004

 

Investigación

 

Rutas alternas de síntesis para la preparación de Fmoc-Trinucleósido-Difosfato Fosforamiditos

 

Jorge Yáñez, Xavier Soberón y Paul Gaytán*

 

Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México. E-mail: paul@ibt.unam.mx

 

Recibido el 3 de diciembre del 2003.
Aceptado el 11 de marzo del 2004.

 

Resumen

Los Fmoc-trinucleósido-difosfato fosforamiditos (FTDFs)1 son moléculas compuestas por tres nucleósidos, teniendo aplicación como unidades mutagénicas durante el ensamble automatizado de oligonucleótidos. El uso de estos sintones permite sustituir codones silvestres por codones mutantes completos en una región determinada del gen de interés, evitando a nivel de proteína, el sesgo hacia sólo cierto tipo de aminoácidos que se genera con los métodos de mutagénesis basados en mutaciones puntuales de nucleótidos y también la redundancia de codones que se obtiene con la preparación de oligonucleótidos degenerados. En el presente trabajo se exploraron varias rutas sintéticas para su preparación, teniendo como principal objetivo lograr reacciones de acoplamiento internucleotídico limpias que faciliten los procesos de purificación cromatográficos, utilizando insumos de fácil preparación. Las síntesis se realizaron en fase líquida, en escalas de gramos, evaluando metodologías de fosfatotriéster. El mejor resultado se obtuvo usando 2-clorofenil-O,O-bis(1-hidroxibenzotriazolil)fosfato como reactivo fosforilante y tres reacciones sin aislar.

Palabras clave: Oligonucleótidos, trinucleótido-fosforamiditos, mutagénesis, enzimas, codon, Fmoc.

 

Abstract

Fmoc-trinucleoside-diphosphate phosphoramidites are molecules assembled with three nucleosides, having application as mutagenic units during automated synthesis of oligonucleotides. These synthons afford substitution of wild-type codons by complete mutant codons in a specific region of the target gene, avoiding at the protein level, the bias toward certain kind of amino acids that is generated with conventional methods of mutagenesis. In the present work, three pathways of organic synthesis were explored for the preparation of such valuable compounds, setting as main goal the achievement of clean, one-pot internucleotidic reactions that enable the easy purification of the target compound by column chromatography. Syntheses were performed in liquid-phase and gram-scales through the phosphotriester method. The best pathway for the preparation of dinucleotides and trinucleotides made use of 2-chlorophenyl-O,O-bis(1-hydroxybenzotriazoly)phosphate as phosphorylating reagent.

Key words: Oligonucleotides, trinucleotide-phosphoramidites, muta-genesis, enzymes, codon, Fmoc.

 

Introducción

En esta era biotecnológica se reconoce el potencial que las enzimas representan para la industria química, debido a su capacidad para generar procesos poco contaminantes y baja proporción de subproductos en las reacciones, dada su alta especificidad en las transformaciones químicas [1]. Sin embargo, la mayoría de enzimas naturales que pudiesen usarse en algún proceso industrial deben ser optimizadas a sus nuevos escenarios de acción a través de procesos artificiales de mutagénesis de su gen codificante. Así, por ejemplo, se puede lograr que una enzima naturalmente mesofílica se vuelva termoresistente [2], o bien que una enzima hidrofílica se vuelva tolerante a disolventes orgánicos [3] e inclusive se puede lograr que reconozca un sustrato distinto a su sustrato natural [4].

En este contexto, muchos métodos han sido desarrollados para acelerar la evolución artificial de las proteínas [5], pero sin lugar a dudas uno de los más comunes recurre al uso de oligonucleótidos sintéticos, ya sea para sustituir un aminoácido específico o un conjunto de varios aminoácidos en forma aleatoria [6]. Posteriormente estos oligonucleótidos son incorporados a los genes codificantes a través de una serie de reacciones enzimáticas realizadas in vitro. Actualmente la síntesis química de oligonucleótidos es realizada en fase sólida, en la dirección 3'→5' a través de la adición automatizada y secuencial de nucleósido-fosforamiditos. La unión de cada nucleótido a la cadena de oligo creciente en el soporte se logra a través de cuatro reacciones prácticamente espontáneas.

El uso de mezclas de nucleótidos durante el ensamble de oligos, permite generar conjuntos de codones que representan a sólo ciertos subgrupos de aminoácidos e inclusive a los 20 aminoácidos [6]. Así, por ejemplo, la sustitución de un codón silvestre por cualquiera de los 4 nucleótidos (N) en la primera y segunda posición del codón, y una mezcla de G/C en la tercera posición darán lugar a una mezcla de 32 codones que engloban a los 20 aminoácidos. Esta estrategia de mutagénesis se denomina NNG/C y es ampliamente utilizada en la ingeniería y evolución dirigida de proteínas. Sin embargo, su principal desventaja consiste en generar una frecuencia heterogénea de codones. Por ejemplo, los codones que dan lugar a triptofano y metionina están representados una sola vez en este conjunto, mientras que aquellos que generan argininina, leucina y serina están representados hasta 3 veces [6].

El problema de redundancia de codones se ha eliminado usando mezclas de DMTr-trinucleósido-difosfato-fosforamiditos (DMTr representa al grupo protector 4,4'-dimetoxitritilo) que codifican a los 20 aa [7] o sólo un subconjunto de ellos [8, 9]. En 1998 nuestro grupo de trabajo publicó una estrategia de mutagénesis basada en el uso de Fmoc-trinucleósido-difosfato fosforamiditos (FTDFs) [10], donde se describió su síntesis química a través de una sola ruta. Fmoc representa al grupo protector 9-fluorenilmetoxicarbonilo, el cual es lábil a condiciones básicas suaves y estable a condiciones ácidas, contrario a la estabilidad del grupo DMTr. El uso exitoso de tales reactivos en procesos de mutagénesis, nos motivó a analizar varias rutas alternas de síntesis para su preparación, teniendo como objetivo central generar una vía que produjera reacciones limpias y con buenos rendimientos para facilitar el proceso de purificación cromatográfico.

 

Resultados y discusión

Los nucleósidos que constituyen el ADN están enlazados entre sí por grupos fosfato, a través del hidroxilo 5' de cada uno de ellos y el hidroxilo 3' de la unidad contigua. Por tanto, partiendo de nucleósidos aislados, existen muchas opciones para generar el enlace internucleotídico desde un punto de vista estrictamente sintético [11]. De esta manera, es posible fosforilar o fosfitilar el hidroxilo 3' de un nucleósido y hacerlo reaccionar con el hidroxilo 5' de otro nucleósido, o bien hacer lo contrario, fosforilar o fosfitilar el hidroxilo 5' de un nucleósido y hacerlo reaccionar con el hidroxilo 3' de otro. Tales reacciones internucleotídicas se pueden lograr a través de intermediarios aislados o por reacciones secuenciales in situ. Adicionalmente, como materia prima se pueden usar nucleósidos cuyos centros reactivos se encuentren completamente protegidos o inclusive nucleósidos parcialmente protegidos. En este sentido, el esquema de síntesis ideal debe ser aquel que permita obtener un buen rendimiento del producto de interés, reacciones limpias que faciliten su purificación y sobretodo que requiera de materias primas fácilmente asequibles.

En este trabajo decidimos evaluar 3 rutas de síntesis, pre-estableciendo como condición principal que las reacciones necesarias para llegar al producto se realizaran en forma seriada, a fin de evitar el aislamiento de intermediarios reactivos cuya purificación normalmente es difícil. Como secuencia de prueba se escogió el trinucleótido GCT, porque esta combinación de bases codifica al aminoácido alanina, usado muy frecuentemente en ingeniería de proteínas para sustituir residuos silvestres que se cree pudieran tener alguna implicación en la función biológica [12]. A diferencia de la mayoría de aminoácidos que componen a las proteínas, la alanina tiene una cadena lateral pequeña formada por un grupo metilo y la sustitución de este aminoácido por cualquier otro —excepto glicina y prolina— no causa distorsión en la cadena polipeptídica. Por tanto, este cambio de aminoácido permite estudiar el efecto neto que cada una de las cadenas laterales de una proteína desempeña en su función. Tal estrategia se denomina barrido de alaninas.

La evaluación de estas rutas de síntesis requirió preparar nucleósidos protegidos en el hidroxilo 5' con el grupo Fmoc, como se indica en el esquema 1, así como proteger el hidroxilo 3' de la 4N-benzoildesoxicitidina con el grupo DMTr. La selectividad de protección en nucleósidos se logra en base a que el hidroxilo 5' es primario y por tanto es mas reactivo y menos impedido estéricamente que el hidroxilo 3' de naturaleza secundaria.

La primer ruta sintética que evaluamos, ejemplificada con el dímero 5'-O-FmocdGC mostrado en el esquema 2 (ruta 1), se llevó a cabo a través de un esquema de síntesis completamente protegido. Para ello se utilizó el nucleósido dGiBu protegido en el hidroxilo 5' con el grupo Fmoc y el nucleósido dCbz protegido en su hidroxilo 3' con el grupo DMTr [10]. De esta manera quedan libres los dos centros nucleofílicos que deben dar lugar al enlace internucleotídico correcto 3'-5'. Esta ruta se inició con la preparación del intermediario fosforilante 2-clorofenilditriazolfosfato [13,14] (1.2 eq.), sintetizado por reacción entre 2-clorofenildiclorofostato y 1,2,4-triazol en presencia de diisopropiletilamina. En el segundo paso, dicho intermediario se hizo reaccionar con 1 eq. de 5'-O-FmocdG para generar el nucleósido fosforilado en el hidroxilo 3'. A pesar de que la reacción se mantuvo en agitación por 2h, quedó aproximadamente entre un 5 y 10% de nucleósido sin consumir según el análisis por cromatografía en capa fina (CCF). Experimentos preliminares en los que se aumentó el tiempo de reacción para tratar de incrementar el rendimiento de fosforilación, dieron lugar a una proporción significativa de subproductos fluorescentes que, de acuerdo a reportes previos, corresponden a productos de adición en el carbono 6 del anillo aromático de la guanina [15,16]. En el tercer paso, el nucleósido fosforilado se acopló a 3'-O-DMTrdC (1.2 e.q.) en presencia de NMI como catalizador de la reacción. Tras 2 h de reacción, el análisis por CCF reveló la desaparición completa del intermediario fosforilado y todavía un ligero remanente de los nucleósidos iniciales 3'-O-DMTrdC y 5'-O-FmocdG. La mezcla de reacción conteniendo al dinucleótido completamente protegido se lavó y en un cuarto paso se sometió a hidrólisis ácida a baja temperatura para remover el grupo protector DMTr. En este punto, una pequeña alícuota de la mezcla se sometió a hidrólisis básica para remover los grupos protectores de las nucleobases, el grupo Fmoc y el grupo o-clorofenilo internucleotídico, para determinar por HPLC de fase reversa los probables subproductos diméricos formados, mismos que se muestran en la figura 1. De acuerdo a este análisis (figura 2b), el dímero esperado 5'-O-Fmoc-dGC representó el 60 % de todo el material absorbente a 260 nm, eluyendo a los 7.78 min, mientras que los monómeros dC y dG -provenientes de los nucleósidos utilizados como materia prima- eluyeron a tiempos de retención (tR) de 3.37 y 5.02 min respectivamente. El único subproducto de tipo dimérico observado en la mezcla fue el dGG-3'3' (tR 9.49 min) formado probablemente en la 2ª o 3ª etapa del proceso. El dinucleótido esperado, 5'-O-Fmoc-dGC, se obtuvo como una mezcla de dos diasteroisómeros —mostrando Rfs de 0.45 y 0.51—, generados por la presencia de centros quirales en cada uno de los azúcares que componen los nucleósidos y la generación de un nuevo centro quiral en el fósforo internucleotídico. Se purificó por cromatografía en columna, dificultándose su separación del monómero 5'-O-FmocdG debido a que éste último presentó un Rf (0.43) muy similar al diastereoisómero menos hidrofóbico. La mezcla de diastereoisómeros fue caracterizada por RMN de 31P, observándose dos señales en -8.39 y -8.20 ppm correspondientes a los fósforos internucleotídicos. El compuesto se obtuvo en forma pura con un rendimiento de 45% con respecto al monómero inicial 5'-O-FmocdG.

Aunque la ruta 1 se basó en un esquema completamente protegido para favorecer el acoplamiento internucleotídico 3'-5' entre los monómeros dG y dC, no se logró evitar la formación del subproducto dGG-3'3' anteriormente mencionado, a pesar del carácter monofosforilante del intermediario 2-clorofenilditriazolfosfato [17]. En términos generales la síntesis fue exitosa, pero el mayor inconveniente en esta ruta sintética estuvo representado por la disponibilidad del sustrato dimetoxitritilado en la terminal 3' (3'-O-DMTrdC), cuya preparación es laboriosa por requerir primero la protección del hidroxilo 5' con el grupo tertbutildimetilsililo (TBDMS), seguida de la protección del hidroxilo 3' con el grupo DMTr y por último la remoción del grupo TBDMS (Esquema 1b) [10].

Para tratar de simplificar el proceso en lo referente a la preparación del nucleósido 3'-dimetoxitritilado y al mismo tiempo eliminar el cuarto paso de la ruta 1, en la ruta 2 decidimos sustituir tal nucleósido por dCbz que carecía de cualquier tipo de protección hidroxílica, siendo además comercialmente disponible. Basados en la diferencia de reactividad de los dos tipos de hidroxilos, pronosticábamos de antemano una preferencia hacia la formación del enlace internucleotídico 3'-5' entre 5'-O-FmocdG y dCbz. El procedimiento fue el mismo que en la ruta 1, con la salvedad que la dCbz se adicionó en exceso (2 eq. con respecto a 5'-O-FmocdG) para tratar de favorecer el acoplamiento de su hidroxilo 5'. El análisis por HPLC de la mezcla de reacción cruda, confirmó la formación del producto de interés en un 33 % con respecto a todo el material absorbente a 260 nm, mostrando claramente altas proporciones de los nucleósidos iniciales dC y dG, además del dímero simétrico dGG-3'3'. Tras purificación en columna, el dinucleótido deseado se obtuvo con un 51% de rendimiento, debido a que algunas fracciones salieron contaminadas con el nucleósido inicial 5'-O-FmocdG, que al igual que en la ruta 1, no fue consumido completamente y generó el pico correspondiente a dG en el análisis por HPLC.

Tratando de mejorar el rendimiento obtenido en la ruta de síntesis 2 y disminuir la proporción de materias primas que dificultan la purificación del producto de interés, probamos una tercera ruta de síntesis (esquema 2, ruta 3) en la que sustituimos el 1,2,4-triazol por 1-hidroxibenzotriazol (HOBt) en la preparación del reactivo fosforilador, a fin de generar un intermediario más reactivo [18,19]. Esta modificación favoreció el consumo total de 5'-O-FmocdG, reaccionando posteriormente el nucleósido activado con el hidroxilo 5' del nucleósido dCbz. Es importante mencionar que debido a la mayor reactividad [20] del agente fosforilante, el subproducto simétrico dGG-3'3' también se generó en mayor proporción con respecto a las rutas 1 y 2. De hecho, el pico que se observa a tR de 5.03 min en el cromatograma de la figura 2c no corresponde al nucleósido dG proveniente de 5'-O-FmocdG, sino mas bien al subproducto dimérico dCC-5'5', cuya remoción por cromatografía en silica convencional es muy fácil dada su mayor polaridad con respecto al dímero 5'-O-Fmoc-dGC. A su vez, el otro subproducto dimérico dGG-3'3' originalmente porta dos grupos protectores Fmoc que lo hacen más hidrofóbico con respecto al dímero blanco 5'-O-Fmoc-dGC y por consiguiente es eliminado también fácilmente por cromatografía en columna. Por tanto, la ruta 3 dio lugar a la mezcla de reacción con menor contenido del monómero inicial 5'-O-FmocdG, facilitando con ello el proceso de purificación cromatográfico y dando el mejor rendimiento (60%).

El dímero 5'-O-Fmoc-dGC fue utilizado para la síntesis del Fmoc-trinucleósido-difosfato GCT (esquema 3), siguiendo la misma secuencia de reacciones descritas en la ruta 3, pero adicionando timidina (dT) en la tercera etapa de esterificación. El trímero mostró por RMN de 31P, ocho singuletes localizados entre -6.905 y -7.710 ppm, correspondientes a los cuatros diasteroisómeros formados en la mezcla de reacción, a razón de dos fosfatos por cada uno de ellos.

Con base en los resultados anteriores, la ruta de síntesis 3 generó los mejores rendimientos para la preparación de Fmoc-trinucleósido-difosfatos, las reacciones más limpias y el requerimiento de sustratos menos laboriosos. Por tanto, se usó esta vía de síntesis para preparar otros cuatro Fmoc-trinucleósido-difosfatos, haciendo uso de varias combinaciones de nucleósidos. Las secuencias nucleotídicas fueron elegidas con el fin de representar aminoácidos con distintas propiedades fisicoquímicas, tales como residuos hidrofóbicos (fenilalanina, TTT), polares cargados (lisina, AAA) y polares sin carga (glutamina, CAG y cisteína, TGC).

La síntesis de los 4 trinucleótidos adicionales, requirió preparar los Fmoc-monómeros de dT, dAbz y dCbz, siguiendo el procedimiento mostrado en el esquema 1 [21].

En RMN de 31P, los dinucleótidos intermedios Fmoc-dAA, Fmoc-dCA y Fmoc-dTG dieron lugar a dos singuletes, correspondientes a cada uno de los diasteroisómeros generados en la reacción. Las señales se localizaron entre -7.1 y -7.8 ppm. Sólo en el caso del dinucleótido Fmoc-dTT apareció un único singulete en -11.12 ppm, probablemente como consecuencia de una estructura tridimensional similar entre ambos diasteroisómeros.

Los Fmoc-trinucleósido-difosfatos generados con los dímeros mencionados arriba, mostraron espectros más complejos tanto en RMN de 1H como de 31P debido al mayor número de protones y el mayor número de diasteroisómeros por compuesto. En RMN de 31P, por ejemplo, casi todos los compuestos generaron 8 singuletes, correspondiendo 2 señales por cada uno de los cuatro diasteroisómeros. Las señales para los fósforos pentavelentes aparecieron en la zona comprendida entre -6.00 y -7.90 ppm.

Una vez caracterizados los cinco Fmoc-trinucleósido-difosfatos, fueron fosfitilados con N,N-diisopropilaminometoxiclorofosfina en presencia de diisopropiletilamina como neutralizador del HCl liberado en la reacción, siguiendo el procedimiento original descrito por Beaucage (esquema 3) [22]. Los Fmoc-trímero amiditos se purificaron por cromatografía rápida en columna, utilizando condiciones ligeramente básicas generadas por el uso de piridina en la fase móvil. Los compuestos se obtuvieron con una pureza superior a 90% y rendimientos promedio de 50%. Cabe mencionar que aunque la reacción de fosfitilación fue completa, una gran proporción del producto parece haber reaccionado con los silanoles que componen la silicagel y por ello el bajo rendimiento obtenido. Una probable solución a este problema será la purificación en fases estacionarias de fase reversa cuyos silanoles se encuentran bloqueados por cadenas alquílicas.

En lo referente a la caracterización espectroscópica, en el análisis por RMN de 31P el fósforo trivalente de la función fosforamidito se observó como una señal múltiple alrededor de 150 ppm, mientras que los fosfatos internucleotídicos correspondientes a los fósforos pentavalentes se continuaron observando como una señal múltiple alrededor de -7 ppm, confirmando con ello la presencia de los dos tipos de fósforos que componen nuestras moléculas blanco.

Por último, se evaluó la funcionalidad química de los cinco FTDFs en síntesis de oligonucleótidos, preparando una mezcla equimolar de ellos y acoplándolos en fase sólida a un soporte derivatizado con el nucleósido dC, a fin de generar una mezcla de tetrámeros GCTC, TTTC, AAAC, CAGC y TGCC. Tras desprotección alcalina y remoción del soporte, la mezcla fue analizada por HPLC y cada uno de los tetrámeros generados se identificó por comparación directa con controles exactos preparados por el método convencional de síntesis (Fig. 3). El análisis por HPLC permitió determinar la proporción de cada uno de ellos en base a su área integrada y coeficiente de absortividad (tabla I). De esta manera fue posible calcular la reactividad relativa de cada uno de los FTDFs con respecto al trímero Fmoc-dTTT y definir su utilidad en la construcción de bibliotecas combinatorias de oligonucleótidos.

De estos resultados se puede concluir que cada trinucleótido-fosforamidito muestra una reactividad ligeramente distinta, probablemente como una consecuencia estructural y para generar frecuencias homogéneas de cada uno de los aminoácidos mutantes, tendrá que utilizarce una mezcla mutagénica con concentraciones ajustadas de cada uno de los FTDFs.

Por tanto, el futuro de estos cinco sintones será su evaluación en experimentos biológicos, para tratar de generar cambios de actividad o especificidad en una proteína de alto interés clínico denominada ß-lactamasa, la enzima causante de generar el mayor número de microorganismos resistentes a antibióticos ß-penicilánicos o cefalosporínicos, misma que se ha convertido en nuestra proteína modelo por excelencia dada su fácil selectividad en distintos antibióticos [23].

 

Parte Experimental

Consideraciones Generales. Las reacciones químicas y el ensamble de los oligonucleótidos se realizaron en atmósferas de nitrógeno, utilizando disolventes anhidros, adquiridos en su mayoría de Aldrich. Los reactivos cloruro de fluoren-9-il-metoxicarbonilo (Fmoc-Cl), cloruro de 4,4'-dimetoxitritilo (DMTr-Cl), o-clorofenildiclorofosfato, imidazol, 1,2,4-triazol, N,N-diisopropiletilamina (DIPEA), N,N-diisopropilaminome-toxiclorofosfina, 1-hidroxibenzo-triazol (HOBt), cloruro de terbutildimetilsilano (TBDMS-Cl), fluoruro de tetrabutilamonio (TBAF) y pentóxido de fósforo también fueron adquiridos de Aldrich. Los nucleósidos 6N-benzoil-desoxiadenosina (dAbz), 4N-benzoil-desoxicitidina (dCbz), 2N-isobutiril-desoxiguanosina (dGiBu) y timidina fueron adquiridos de Chemgenes (Wilmington, MA).

Las purificaciones fueron hechas por cromatografía rápida en columna usando silicagel 60H para placa (5-40 µm) y silicagel 60 para cromatografía en columna, ambas de Merck (DF, Mx), utilizando nitrógeno para presurizar el sistema. Las reacciones y purificaciones fueron rastreadas por cromatografía en capa fina (CCF) utilizando cromatoplacas de silicagel 60 con indicador fluorescente a 254 nm. El sistema de elución fue cloroformo-metanol 9:1 para el análisis de monómeros, dímeros y trímeros. En el caso de fosforamiditos, estos fueron eluidos con el sistema diclorometano:acetato de etilo:trietilamina 45:45:10.

Los espectros de RMN de 1H fueron obtenidos en equipos Hitachi-Perkin Elmer R-24b 60, Varian Gemini 200 y Varian Unity 300, según la complejidad del compuesto a analizar. Los espectros de 31P fueron determinados en un aparato Varian VXR a 121 MHz utilizando como estándar externo H3PO4.

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosina (5'-O-FmocdG). La 2N-isobutiril-desoxiguanosina (10 mmol, 3.37 g) fue coevaporada con piridina seca (2 × 15 mL) y redisuelta bajo atmósfera inerte en 70 ml del mismo disolvente. Se le adicionó el cloruro de fluoren-9-il-metoxicarbonilo (15 mmol, 3.88 g) en polvo lentamente, en el transcurso de 1-2 h bajo agitación magnética. Una vez disuelto el Fmoc-Cl, el análisis por CCF mostró la conversión casi completa de la materia prima, por lo que la reacción fue terminada con 2 mL de metanol. La mezcla de reacción fue concentrada en rotavapor a sequedad, resuspendida en 120 mL de diclorometano y lavada con solución saturada de cloruro de sodio (2 × 30 mL) y agua (1 × 30 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se filtró y se concentró hasta formación de espuma blanca, disolviéndola nuevamente en dicloro-metano y adsorbiéndola sobre 9 g de sílicagel 60H. El material fue purificado por cromatografia en columna sobre 60 g más de este soporte, eluyendo el producto de interés con 5% de metanol en diclorometano. Las fracciones que contenían el material puro fueron reunidas y concentradas a sequedad. El producto fue precipitado sobre 100 mL de éter etílico-éter de petróleo 1:1 enfriado a -20°C, bajo agitación magnética fuerte. El precipitado fue recuperado por filtración y secado al alto vacío, recuperando 3.70 gramos de material puro en forma de polvo blanco.

Rendimiento: 66%; Rf 0.35; pf 118-120 °C; RMN 1H (CDCl3, 300 MHz): δ 12.41 (H1, 1H, s), 10.57 (NH de dG, 1H, s), 7.93 (H8, 1H, s), 7.68-7.13 (aromáticos de Fmoc, 8H), 6.18 (H1', 1H, t, J = 6.0 Hz), 5.47 (OH 3', 1H, sa), 4.80 (H3', 1H, s), 4.49 (CH2 de Fmoc + 2H5' + H4', 5H, m), 4.14 (CH de Fmoc, 1H, t, J = 7.2 Hz), 2.85 (CH de isobutirilo, 1H, sept, J = 6.6 Hz), 2.64 (H2'β, 1H, sa), 2.46 (H2'α, 1H, sa), 1.20 (CH3 de isobutirilo, 6H, d, J = 6.6 Hz).

5'-O-(fluoren-9-il-metoxicarbonil)-4N-benzoil-desoxicitidina (5'-O-FmocdC). Este compuesto se sintetizó por el mismo procedimiento que 5'-O-FmocdA, utilizando las siguientes cantidades de reactivos. 4N-benzoil-desoxicitidina (20 mmol): 6.6 g, Fmoc-Cl (30 mmol): 7.76 g. Se obtuvo 6.2 g de producto puro.

Rendimiento: 56.1%; Rf 0.5; pf 133-135 °C; RMN 1H (CDCl3, 300 MHz): δ 10.9 (NH de dC, 1H, sa), 8.08-8.02 (Fmoc, 3H, m), 7.79-7.75 (Fmoc, 2H, m), 7.61-7.57 (Fmoc, 3H, m), 7.52-7.30 (5H de benzoilo + H5 y H6 de dC, 7H, m), 6.20 (H1', 1H, m), 5.50 (OH 3', 1H, sa), 4.52-4.40 (2H5' + CH2 de Fmoc, 4H, m), 4.28-4.24 (H3' + H4', 2H, m), 4.16 (CH de Fmoc, 1H, t, J = 6.3 Hz), 2.59-2.46 (H2'β, 1H, ddd, J = 4.5, 6.3 y 13.8 Hz), 2.13-2.04 (H2'α, 1H, dt, J = 6.5 y 13.2 Hz).

5'-O-(fluoren-9-il-metoxicarbonil)-6N-benzoil-desoxiadenosina (5'-O-FmocdA). Este compuesto se sintetizó por el mismo procedimiento que 5'-O-FmocdA, utilizando las siguientes cantidades de reactivos. 6N-benzoil-desoxiadenosina (20 mmol): 6.6 g, Fmoc-Cl (30 mmol): 7.76 g. Se obtuvo 5.9 g de material puro.

Rendimiento: 52.9%; Rf 0.4; pf 128-130 °C ; RMN 1H (CDCl3, 300 MHz): δ 9.03 (NH de dA, 1H, sa), 8.80 (H8 de dA, 1H, s), 8.23 (H2 de dA, 1H, s), 7.99 (Fmoc, 2H, d, J = 8.7 Hz), 7.73 (Fmoc, 2H, d, J = 7.5 Hz), 7.60-7.26 (4H de Fmoc + 5H de benzoilo, 9H, m), 6.52 (H1', 1H, t, J = 6.6 Hz), 4.71 (H3', 1H, sa), 4.46-4.23 (2H5' y 1H4' + CH2 y CH de Fmoc, 6H, m), 2.94-2.57 (2H2' + OH 3', 3H, m).

5'-O-(fluoren-9-il-metoxicarbonil)-timidina (5'-O-FmocdT). Este compuesto se sintetizó por el mismo procedimiento que 5'-O-FmocdA, utilizando las siguientes cantidades de reactivos. timidina (20 mmol): 4.8 g, Fmoc-Cl (30 mmol): 7.76 g. Se obtuvo 6.85 g de material puro.

Rendimiento: 74.5%; Rf 0.6; pf 190-191 °C; RMN 1H (CDCl3, 300 MHz): δ 10.24 (H3, 1H, s), 7.76-7.31 (Aromáticos de Fmoc, 8H, m), 7.34 (H6, 1H, c, J = 1.0 Hz), 6.36 (H1', 1H, t, J = 6.5 Hz), 5.03 (OH 3', 1H, d, J = 4.5 Hz), 4.53 y 4.45 (CH2 de Fmoc, 2H, 2dd, J = 10.5 y 7.0 Hz), 4.44 y 4.39 (H5', 2H, 2dd, J = 12.0, 11.5, 5.0 y 3.0 Hz), 4.36 (H3', 1H, m), 4.25 (CH de Fmoc, 1H, t, J = 7 Hz), 4.12 (H4', 1H, dd, J = 4.0 y 3.0 Hz), 2.36 (H2'β, 1H, ddd, J = 14.0, 6.5 y 4.0 Hz), 2.08 (H2'α, 1H, ddd, J = 13.5, 6.5 y 6.5 Hz), 1.80 (H7, 3H, d, J = 1.0 Hz).

3'-O-(4,4'-dimetoxitritil)-4N-benzoil-desoxicitidina (3'-O-DMTrdC). 3.31 g de 4N-benzoil-desoxicitidina (10 mmol) y 1.40 g (22 mmol) de imidazol se coevaporaron con piridina seca (2 × 25 mL), redisolviéndose en la misma cantidad de este disolvente. Enseguida se adicionó lentamente bajo atmósfera inerte 1.95 g de cloruro de terbutildimetilsililo (TBDMS-Cl, 13 mmol) diluido con 10 mL de piridina. Terminada la adición, el análisis por CCF reveló la culminación de la reacción, siendo entonces terminada. El producto principal fue recuperado por precipitación sobre 100 mL de n-hexano, obteniendo 4.13 g de material puro. El compuesto 5'-O-TBDMSdCbz (9 mmol, 4 g) fue coevaporado con piridina seca (2 × 15 mL) y redisuelto en 60 mL de este mismo disolvente. A continuación se adicionó 3.95 g de cloruro de dimetoxitritilo (11.7 mmol) en polvo y se mantuvo la reacción 12 h bajo agitación magnética y atmósfera inerte. Concluido este tiempo, el análisis por CCF mostró la desaparición casi completa de la materia prima. La reacción fue terminada con metanol y lavada. El material fue purificado por cromatografía rápida eluyendo el compuesto con 20% de acetato de etilo en hexanos. Las fracciones que contenían el material biprotegido fueron reunidas y concentradas a sequedad hasta formación de espuma, recuperando 5.9 g (7.9 mmol) de material puro. El material biprotegido se dejó reaccionar 12 h con 2.48 g (9.5 mmol) de fluoruro de tetrabutilamonio en 100 mL de THF, generando la eliminación completa del grupo TBDMS. La reacción se terminó en la forma acostumbrada y el compuesto de interés se purificó por cromatografía en columna, recuperándolo con 40% de acetato de etilo en hexano. Las fracciones que contenían el material puro fueron reunidas, concentradas a sequedad y precipitadas sobre n-hexano. El precipitado fue recuperado por filtración y secado al alto vacío, obteniendo 4.2 g de material puro.

Rendimiento: 73%; pf 114-116 °C; RMN 1H (CDCl3 300 MHz): δ 9.20 (NH, 1H, sa), 8.18 (H6, 1H, d, J = 7.5 Hz), 7.81 (DMTr, 2H, d, J = 7.2 Hz), 7.54-7.19 (H5 + 7H de DMTr + 5H de benzoilo, 13H, m), 6.80 (DMTr, 4H, d, J = 9.6 Hz), 6.26 (H1', 1H, dd, J = 6 y 3.9 Hz), 4.53 (H3', 1H, sa), 3.91 (H4', 1H, d, J = 1.8 Hz), 3.74 (CH3O-DMTr, 6H, s), 3.63 (H5', 1H, dd, J = 2.4 y 6.9 Hz), 3.25 (H5', 1H, dd, J = 3 y 6 Hz), 2.50 (OH 3', 1H, sa), 2.25-2.18 (H2'α, 1H, m), 1.96-1.89 (H2'β, 1H, m).

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoilildesoxicitidina (5'-O-FmocdGC).

Ruta de síntesis 1

1er Paso -Preparación del reactivo fosforilador. El 1,2,4-triazol (14.4 mmol, 0.99 g) fue coevaporado con piridina seca (2 × 10 mL) y THF (1 × 10 mL). Se redisolvió en 20 ml de éste último disolvente, se enfrió a 0°C y se adicionó lentamente 0.59 ml (3.6 mmol) de o-clorofenildiclorofosfato y 1.25 mL (7.2 mmol) de diisopropiletilamina. La reacción se mantuvo en agitación a temperatura ambiente durante 1 h, generándose un abundante precipitado correspondiente al clorhidrato de diisopropiletilamonio. Este precipitado fue eliminado por filtración y lavado con THF (2 × 10 mL), quedando en solución el reactivo fosforilante 2-clorofenilditriazolfosfato.

2º Paso -Fosforilación. El filtrado anterior fue adicionado a 5'-O-FmocdG (3 mmol, 1.68 g,) previamente coevaporado con piridina (2 × 10 mL) y THF (1 × 10 mL). La mezcla de reacción se concentró a la mitad de su volumen, dejándose reaccionar por 2 h. Transcurrido este tiempo, el análisis por CCF mostró la desaparición casi completa de la materia prima, permitiendo continuar con el siguiente paso.

3er Paso -Esterificación La mezcla de reacción anterior fue transferida a otro matraz que ya contenía 3'-O-DMTrdC (1.90 g, 3 mmol) secado previamente con piridina (2 x 10 ml). Se adicionó 0.48 ml (6 mmol) de N-metilimidazol y se concentró la reacción a la mitad de volumen, dejándose reaccionar por 2 h. La reacción se terminó con 1 mL de agua, se concentró hasta formación de un aceite, siendo resuspendido en 100 ml de diclorometano y lavado con solución saturada de cloruro de sodio (2 × 30 mL) y agua (1 × 30 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se filtró y se concentró hasta formarse una espuma ligeramente amarilla.

4º Paso -Destilación. La espuma se trató por 5 min con 100 ml de ácido dicloroacético al 5% enfriado a 0°C e inmediatamente se neutralizó con solución saturada de bicarbonato de sodio. Se lavó con cloruro de sodio saturado, se secó con sulfato de sodio anhidro y se concentró hasta formarse un aceite viscoso. El compuesto fue purificado por cromatografía en columna, eluyendo con 6% de metanol en diclorometano. Las fracciones que contenían material puro se reunieron y concentraron hasta formación de una espuma blanca, recuperando 1.5 g (1.35 mmol) de material puro.

Rendimiento: 45%; Rf 0.38; pf 128-130°C; RMN 1H (CDCl3, 300 MHz) de la mezcla diastereoisomérica: δ 12.03 y 11.98 (H1 de dG, 1H, 2s), 10.78 y 10.34 (NH de dG, 1H, 2s), 8.92 (NH de dC, 1H, sa), 8.39 y 8.19 (H6 de dC, 1H, 2d, J = 7 Hz), 7.85-7.40 (aromáticos de Fmoc + aromáticos de o-clorofenilo + aromáticos de benzoilo + H8 de dG + H5 de dC, 19H, m), 6.24, 6.06 y 5.87 (H1', 2H, 3m), 5.42 y 5.37 (H3' de dG, 1H, 2m), 4.72 (H3' de dC, 1H, m), 4.63 (H5' de dC, 2H, m), 4.49-4.20 (CH2 de Fmoc + H4' de dG + H4' de dC + 2H5' de dG + H5' de dC, 7H, m), 4.17 (CH de Fmoc, 1H, t, J = 7.5 Hz), 2.98-2.92 (CH de isobutirilo, 1H, m), 2.91-2.63 (2H2' de dG + 2H2' de dC, 4H, m), 1.25, 1.23 y 1.20 (CH3 de isobutirilo, 6H, 3d, J = 7 Hz). RMN de 31P (CDCl3): δ -8.39 y -8.20 (2s).

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoil-ildesoxicitidina (5'-O-FmocdGC).

Ruta de síntesis 2

Se siguió el procedimiento descrito en la ruta 1, adicionando en el tercer paso 4N-benzoil-desoxicitidina (6 mmol, 1.99 g) para la reacción de esterificación. Se eliminó el cuarto paso de la ruta 1. El dinucleótido esperado se purificó por cromatografía en columna, recuperándolo con 6% de metanol en diclorometano. Las fracciones que contenían material puro fueron reunidas, concentradas a sequedad y precipitadas de hexano a -30°C, obteniendo después de secado al alto vacío 1.66 g de material puro. Rendimiento: 51%.

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoil-ildesoxicitidina (5'-O-FmocdGC).

Ruta de síntesis 3

Este compuesto fue preparado en forma similar a la ruta 2, utilizando 1-hidroxibenzotriazol (7.2 mmol, 0.97 g) para la preparación del reactivo fosforilador y 4N-benzoil-desoxicitidina (6 mmol, 1.99 g) para el paso de esterificación. El material fue purificado por cromatografía en columna en la forma acostumbrada, eluyéndolo con 6% de metanol en diclorometano. El producto puro fue precipitado de n-hexano a -30 °C recuperándolo por filtración y secado al alto vacío, obteniendo 1.92 g de material puro. Rendimiento: 60%

5'-O-(fluoren-9-il-metoxicarbonil)-4N-benzoil-desoxicitidin-3'-ilorto-clorofenilfosfato-5'-6N -benzoil-ildesoxiadenosina (5'-O-FmocdCA). Este compuesto se sintetizó mediante el procedimiento descrito en la ruta de síntesis 3, a escala de 7 mmol del monómero 5'-O-FmocdC. Se obtuvo 2.42 g de producto puro.

Rendimiento: 46%; Rf 0.46; pf 104-106 °C; RMN 1H (CDCl3, 300 MHz): δ 9.60 (NH de dA, 1H, sa), 8.70 y 8.68 (NH de dC, 1H, 2s), 8.32 (H8 de dA, 1H, s), 8.27 (H2 de dA, 1H, s), 7.98 (Fmoc, 2H, d, J = 8.1 Hz), 7.88 (Fmoc, 2H, dt, J = 2.1 y 7.2 Hz), 7.66 (Fmoc, 2H, t, J = 4.8 Hz), 7.52-7.24 (2H de Fmoc + 4H de o-clorofenilo + 10H de benzoilo, 16H, m), 7.14-7.00 (H5 y H6 de dC, 2H, m), 6.49 y 6.19 (H1' de dA + H1' de dC, 2H, 2dd, J = 6.3 y 12.3 Hz, 5.1 y 12.0 Hz), 5.17-5.15 (H3' de dA, 1H, m), 4.82-4.79 (H3' de dC, 1H, m), 4.58-4.31 (2H5' y 1H4' de dA + 2H5' y 1H4' de dC + CH2 de Fmoc, 8H, m), 4.15 (CH de Fmoc, 1H, t, J = 6.9 Hz), 2.97-2.86 (H2'α de dA + H2'α de dC, 2H, m), 2.60-2.56 (H2'β de dA, 1H, m), 2.13-2.06 (H2'β de dC, 1H, m). RMN 31P (CDCl3): δ -7.16 y -7.79 (1P, P de fosfato, 2s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-clorofenilfosfato-5'-2N-isobutiril-ildesoxiguanosina (5'-O-FmocdTG). Compuesto sintetizado por la ruta 3, a escala de 7 mmol del monómero 5'-O-FmocdT. Se obtuvo 3.93 g de producto puro.

Rendimiento: 57.1%; Rf 0.18; pf 128-130 °C; RMN 1H (CDCl3, 300 MHz): δ 12.33 y 12.15 (H1 de dG, 1H, 2s), 10.80 y 10.41 (NH de dG, 1H, 2s), 10.11 y 10.03 (NH de dT, 1H, 2s), 7.98 (Fmoc, 2H, d, J = 8.1 Hz), 7.69 (Fmoc, 2H, t, J = 6.9 Hz), 7.47 (Fmoc, 2H, dd, J = 6.6 y 9.3 Hz), 7.37-6.97 (2H de Fmoc + 4H de o-clorofenilo + H6 de dT + H8 de dG, 8H, m), 6.31 y 6.14 (H1' de dG + H1' de dT, 2H, 2t, J = 6.6 y 6 Hz), 5.29 y 5.12 (H3' de dT, 1H, 2s), 4.82 (H3' de dG, 1H, sa), 4.54-4.14 (2H5' y 1H4' de dT + 2H5' y 1H4' de dG + CH2 y CH de Fmoc, 9H, m), 2.83 (CH de isobutirilo, 1H, m), 2.60-2.40 (2H2' de dT + 2H2' de dG, 4H, m), 1.72 (H7 de dT, 3H, d, J = 12.9 Hz), 1.20-1.06 (2 CH3 de isobutirilo, 6H, m). RMN 31P (CDCl3): δ -7.54 y -7.60 (1P, P de fosfato, 2s).

5'-O-(fluoren-9-il-metoxicarbonil)-6N-benzoil-desoxiadenosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-iladenosina (5'-O-FmocdAA). Compuesto sintetizado por la ruta 3, a escala de 7 mmol del monómero 5'-O-FmocdA. Se obtuvo 2.8 g de producto puro.

Rendimiento: 37.8%; Rf 0.32; pf 110-112 °C; RMN 1H (CDCl3, 300 MHz): δ 9.50 (NH de dA, 2H, sa), 8.63 y 8.61 (H8 de dA, 2H, 2d, J = 7.2 y 7.5 Hz), 8.36, 8.29, 8.23 y 8.19 (H2 de dA, 2H, 4s), 7.93 (4H, Fmoc, m), 7.63 (2H, Fmoc, d, J=5.7 Hz), 7.48-7.00 (2H de Fmoc + 10H de benzoilo + 4H de o-clorofenilo, 16H, m), 6.49-6.37 (H1' de dA, 2H, m), 5.35 (H3' de dA, 1H, sa), 4.82 (H3' de dA, 1H, sa), 4.53-4.25 (8H, 4H5' y 2H4' + CH2 de Fmoc, m), 4.11 (1H, CH de Fmoc, t, J = 6.9 Hz), 2.98-2.58 (4H, 4H2' de dA, m). RMN 31P (CDCl3): δ -7.36 y -7.46 (1P, P de fosfato, 2s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-clorofenilfosfato-5'-iltimidina (5'-O-FmocdTT). Compuesto sintetizado por la ruta 3, a escala de 7 mmol del monómero 5'-O-FmocdT. Se obtuvo 4.19 g de producto puro.

Rendimiento: 59.8%; Rf 0.40; pf 120-121 °C; RMN 1H (CDCl3, 300 MHz) de la mezcla diastereoisomérica: δ 11.30-11.14 (H3, 2H, 4s), 7.87-7.22 (aromáticos de Fmoc + aromáticos de o-clorofenilo + H6, 14H, m), 6.20 (H1', 2H, q, J = 6.9 Hz), 5.43 (OH 3', 1H, d, J = 4.5 Hz), 5.17 (H3', 1H, sa), 4.42-4.26 (4H5' + 1H4' + 1H3' + CH y CH2 de Fmoc, 9H, m), 4.0 (H4', 1H, sa), 2.45 (H2', 2H, m), 2.13 (H2', 2H, m), 1.71 (H7, 3H, s), 1.70 (H7, 3H, s). RMN 31P (CDCl3): δ -11.13 (s).

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoil-ildexosicitidin-3'-ilorto-clorofenilfosfato-5'-iltimidina (5'-O-FmocdGCT). Compuesto sintetizado por la ruta 3, a escala de 3 mmol del dímero 5'-O-FmocdGC. Se obtuvo 2.21 g de producto puro.

Rendimiento: 50%; Rf 0.36; pf 133-135 °C; RMN 1H la mezcla diastereoisomérica (CDCl3, 300 MHz): δ 12.14 (H1 de dG, 1H, s), 10.43, 10.30 y 10.23 (NH de dG, 1H, 3s), 9.81, 9.68 y 9.58 (H3 de dT, 1H, 3sa), 8.58 y 8.07 (H6 de dC, 1H, 2m), 7.98 (H8 de dG, 1H, m), 7.92-7.04 (aromáticos, 24H, m), 6.20 (H1', 3H, m), 5.41 (H3' de dG, 1H, m), 5.33 (H3' de dC, 1H, m), 4.63-4.25 (CH2 de Fmoc + H4' y H5' de dG + H4' y H5' de dC + H3', H4' y H5' de dT, 12H, m), 4.17 (CH de Fmoc, 1H, t, J = 7 Hz), 3.0-2.15 (2H2' de dG + 2H2' de dC + 2H2' de dT + CH de isobutirilo, 7H, m), 1.79 (H7 de dT, 3H, m), 1.17 (CH3 de isobutirilo, 6H, m); RMN 31P (CDCl3): δ -6.90, -6.98, -7.07, -7.12, -7.16, -7.48, -7.58, -7.74 (8s).

5'-O-(fluoren-9-il-metoxicarbonil)-4N-benzoil-desoxicitidin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosin-3'-ilorto-clorofenilfosfato-5'-2N-isobutiril-ildesoxiguanosina (5'-O-FmocdCAG). Compuesto sintetizado por la ruta 3, a escala de 3 mmol del dímero 5'-O-FmocdCA. Se obtuvo 2.21 g de producto puro.

Rendimiento: 49.6%; Rf 0.30; pf 124-126 °C; RMN 1H (CDCl3, 300 MHz): δ 12.20 (H1 de dG, 1H, sa), 12.09 (NH de dA, 1H, sa), 10.67 (NH de dC, 1H, s), 10.39 (NH de dG, 1H, s), 8.72- 8. 57 (2H de Fmoc, 2H, m), 8.00-7.64 (6H de Fmoc + H8 y H2 de dA + H8 de dG, 9H, m), 7.54- 7.02 (H5 y H6 de dC + 10H de benzoilo + 8H de o-clorofenilo, 20H, m), 6.56-6.49 (H1' de dG, 1H, m), 6.41 (H1' de dA, 1H, dd, J = 6.9 y 14.4 Hz), 6.24-6.18 (H1' de dC, 1H, m), 5.66 (H3' de dA, 1H, sa), 5. 51 (H3' de dC, 1H, sa), 5.15 (H3' de dG, 1H, sa), 4.69-4.32 (2H5' y 1H4' de dC + 2H5' y 1H4' de dA + 2H5' y 1H4' de dG + CH2 de Fmoc, 11H, m), 4.18-4.14 (CH de Fmoc, 1H, m), 2.92-2.76 (2H2' de dC + 2H2' de dA, 4H, m), 2.65-2.61 (CH de isobutirilo, 1H, m), 2.43 (1H, H2'α de dG, m), 2.16-2.09 (H2'β de dG, 1H, m), 1.22-1.05 (2 CH3 de isobutirilo, 6H , m). RMN 31P (CDCl3): δ -6.92, -7.09, -7.49, -7.51, -7.54, -7.60, -7.90 y -8.08 (2P/diastereoisómero, 8s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-clorofenilfosfato-5'-2N-isobutiril-ildesoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoil-ildesoxicitidina (5'-O-FmocdTGC). Compuesto sintetizado por la ruta 3, a escala de 3 mmol del dímero 5'-O-FmocdTG. Se obtuvo 2.21 g de producto puro.

Rendimiento: 49.6%; Rf 0.23; pf 138-140 °C; RMN 1H (CDCl3, 300 MHz): δ 12.16, 12.09 y 11.97 (NH de dG, 1H, 3s), 10.77, 10.56 y 10.28 (H1 de dG, 1H, 3s), 10.09, 9.88 y 9.83 (NH de dC, 1H, 3s), 9.72 y 9.55 (NH de dT, 1H, 2s), 7.89-7.85 (Fmoc, 2H, m), 7.73-7.70 (Fmoc, 2H, m), 7.53-7.08 (4H de Fmoc + 8H de o-clorofenilo + H8 de dG + H6 de dT + 5H de benzoilo + H5 y H6 de dC, 21H, m), 6.34-6.29 (H1' de dG, 1H, m), 6.22-6.12 (H1' de dC, 1H, m), 6.09-6.00 (H1' de dT, 1H, m), 5.43, 5.29 y 5.05 (H3' de dT + H3' de dC + H3' de dG, 3H, 3sa), 4.60-4.18 (2H5' y 1H4' de dT + 2H5' y 1H4' de dC + 2H5' y 1H4' de dG + CH2 de Fmoc, 11H, m), 4.10-4.09 (CH de Fmoc, 1H, m), 2.85-2.49 (2H2' de dT + 2H2' de dC + 2H2' de dG + CH de isobutirilo, 7H, m), 1.67 (H5 de dT, 3H, d, J = 6.9 Hz), 1.22-1.05 (2 CH3 de isobutirilo, 6H, m). RMN 31P (CDCl3): δ -6.070, -6.673, -6.767, -6.962, -7.520, -7.560, -7.823 y -7.881 (2P/diastereoisómero, 8s).

5'-O-(fluoren-9-il-metoxicarbonil)-6N-benzoil-desoxiadenosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosina (5'-O-FmocdAAA). Compuesto sintetizado por la ruta 3, a escala de 3 mmol del dímero 5'-O-FmocdAA. Se obtuvo 2.78 g de producto puro.

Rendimiento: 57.6%; Rf 0.33; pf 114-115°C; RMN 1H (CDCl3, 300 MHz): δ 9.50 (NH de dA, 3H, sa), 8.68 (H8 de dA, 1H, d, J = 4.8 Hz), 8.65 (H8 de dA, 1H, d, J = 4.2 Hz), 8.62 (H8 de dA, 1H, d, J = 4.5 Hz), 8.26-8.13 (H2 de dA, 3H, m), 7.94 (Fmoc, 2H, d, J = 8.1 Hz), 7. 67 (Fmoc, 2H, d, J = 7.2 Hz), 7.49-7.04 (2Hc y 2Hb de Fmoc + 8H de o-clorofenilo + 15H de benzoilo, 27H, m), 6.45-6.35 (H1' de dA, 3H, m), 5.55, 5.46 y 5.34 (H3' de dA, 3H, 3sa), 4.80 (OH 3' de dA, 1H, sa), 4.53-4.28 (6H5' y 3H4' de dA + CH2 de Fmoc, 11H, m), 4.14 (CH de Fmoc, 1H, t, J = 7.2 Hz), 3.18-2.53 (6H2' de dA, 6H, m). RMN 31P (CDCl3): δ -7.02, -7.00, -7.14, -7.20, -7.62, -7.74 y -7.83 (2P/diastereoisómero, 8s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-cloro-fenilfosfato-5'-iltimidin-3'-ilorto-clorofenilfosfato-5'-iltimidina (5'-O-FmocdTTT). Compuesto sintetizado por la ruta 3, a escala de 3 mmol del dímero 5'-O-FmocdTT. Se obtuvo 2.78 g de producto puro.

Rendimiento: 60%; Rf 0.36; pf 128-130; RMN 1H (CDCl3, 300 Mhz) de la mezcla diasteromérica: δ 11.29 (H3, 2H, sa), 11.22 (H3, 1H, sa), 7.86-7.21 (aromáticos de Fmoc + aromáticos de o-clorofenilo + H6, 19H, m), 6.19 (H1', 3H, 2d, J = 6.9 y 6.0 Hz), 5.42 (OH 3', 1H, d, J = 4.2 Hz), 5.22 (H3', 1H, sa), 5.16 (H3', 1H, sa), 4.54-4.28 (CH y CH2 de Fmoc + 6H5' + 2H4' + 1H3', 12H, m), 3.99 (H4', 1H, sa), 2.47 (H2', 4H, m), 2.13 (H2', 2H, m), 1.70 (H7, 9H, s). RMN 31P (CDCl3): δ -11.089 (1P, 2s), -11.27 (1P, 2s).

5'-O-(fluoren-9-il-metoxicarbonil)-2N-isobutiril-desoxiguanosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxicitidin-3'-ilorto-clorofenilfosfato-5'-iltimidin-3'-O-(N,N,-diisopropilamino)-metilfosforamidito (5'-O-FmocdGCT amidito). El trímero 5'-O-FmocGCT (1 mmol, 1.53 g) se coevaporó con THF anhidro ( 2 × 10 mL) hasta formarse una espuma consistente que se dejó secar al alto vacío por 10 min. Se redisolvió en 20 mL de THF y se adicionó bajo atmósfera inerte 0,59 mL de diisopropiletilamina (DIPEA, 3.4 mmol) y 0.58 mL de N,N-diisopropilaminometoxiclorofosfina (3.4 mmol), dejándose reaccionar por 30 min bajo agitación magnética. El análisis por CCF reveló la generación de dos productos principales a mayor Rf con respecto a la materia prima y el consumo total de ésta última. Para terminar la reacción se adicionó 5 ml de una solución saturada de bicarbonato de sodio, se diluyó con diclorometano (50 mL), se eliminó la fase acuosa, se lavó nuevamente con bicarbonato de sodio y luego con una solución saturada de NaCl (2 × 5 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se adicionó 5 mL de piridina y se concentró en rotavapor hasta formarse un aceite ligeramente amarillo. El Fmoc-trímero amidito se purificó por cromatografía en columna, usando sílica gel 60 como fase estacionaria y diclorometano:piridina 9:1 como fase móvil. Las fracciones que contenían compuesto puro se reunieron, concentraron y precipitaron sobre n-hexano grado HPLC. El precipitado se recuperó por filtración y se secó al alto vacío por 12 h sobre pentóxido de fósforo, obteniéndolo finalmente en forma de polvo blanco (0.8 g).

Rendimiento: 44%; Rf 0.62; RMN 31P (CDCl3): δ 150.60-149.97 (P de fosforamidito, 1P, m), -6.62 a -7.44 (P de fosfatos, 2P, m).

5'-O-(fluoren-9-il-metoxicarbonil)-4N-benzoil-desoxicitidin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosin-3'-ilorto-clorofenilfosfato-5'-2N-isobutiril-ildesoxiguanosin-3'-O-(N,N,-diisopropilamino)-metilfosforamidito (5'-O-FmocdCAG amidito). Se sintetizó por el procedimiento descrito para el trímero 5'-O-FmocdGCT amidito, fosfitilando 1.27 mmol (2.0 g) del trímero 5'-O-FmocdCAG. Se recuperó 0.96 g de material puro.

Rendimiento: 43.63%; Rf 0.27; RMN 31P (CDCl3): δ 150.101 y 149.982 (1P, P de fosforamidito, 2s), -6.705, -6.811, -6.855, -6.692 y -7.377, -7.577, -7.810, -7.936 (2P, P de fosfato, 8s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-clorofenilfosfato-5'-2N-isobutiril-ildesoxiguanosin-3'-ilorto-clorofenilfosfato-5'-4N-benzoil-ildesoxicitidin-3'-O-(N,N,-diisopropilamino)-metilfosforamidito (5'-O-FmocdTGC amidito). Se sintetizó por el procedimiento descrito para el trímero 5'-O-FmocdGCT amidito, fosfitilando 1 mmol (1.48 g) del trímero 5'-O-FmocdTGC. Se recuperó 1.07 g de material puro.

Rendimiento: 65%; Rf 0.30; RMN 31P (CDCl3): δ 150.681 y 148.850 (1P, P de fosforamidito, 2s), -6.070, -6.673, -6.767, -6.962, -7.520, -7.650, -7.823, -7.911 (2P, P de fosfato, 8s).

5'-O-(fluoren-9-il-metoxicarbonil)-6N-benzoil-desoxiadenosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosin-3'-ilorto-clorofenilfosfato-5'-6N-benzoil-ildesoxiadenosin-3'-O-(N,N,-diisopropilamino)-metilfosforamidito (5'-O-FmocdAAA amidito). Se sintetizó por el procedimiento descrito para el trímero 5'-O-FmocdGCT amidito, fosfitilando 1.5 mmol (2.34 g) del trímero 5'-O-FmocdAAA. Se recuperó 1.4 g de material puro.

Rendimiento: 54.2%; Rf 0.43; RMN 31P (CDCl3): δ 156.328 y 150.020 (1P, P de fosforamidito, 2s), -7.01, -7.270, -7.320, -7.534 y -7.666 (2P, P de fosfato, 5s).

5'-O-(fluoren-9-il-metoxicarbonil)-timidin-3'-ilorto-clorofenilfosfato-5'-iltimidin-3'-ilorto-clorofenilfosfato-5'-iltimidin-3'-O-(N,N,-diisopropilamino)-metilfosforamidito (5'-O-FmocdTTT amidito). Se sintetizó por el procedimiento descrito para el trímero 5'-O-FmocdGCT amidito, fosfitilando 1 mmol (1.29 g) del trímero 5'-O-FmocdTTT. Se recuperó 1.06 g de material puro.

Rendimiento: 75%; Rf 0.27; RMN 31P (CDCl3): δ 146.40 y 146. 90 (1P), -11.10 (2P).

Determinación de la reactividad relativa de los cinco Fmoc-trinucleósido-difosfato fosforamiditos

Se sintetizaron en forma convencional, por el método de fosfitotriéster en fase sólida, adicionando monómero a monómero, cinco tetrámeros con las secuencias 5'XXXC3'. XXX representa la secuencia de cada uno de los FTDFs sintetizados en este trabajo. Los tetrámeros se usaron como controles en los experimentos de HPLC para encontrar las condiciones óptimas de separación entre ellos y poder analizar posteriormente la reactividad de los FTDFs sintetizados en este trabajo cuando son adicionados, a través de una mezcla equimolar, a un soporte derivatizado con dCbz. Para los experimentos de reactividad de los FTDFs se sintetizaron tres oligonucleótidos con la secuencia XXXC utilizando concentraciones equimolares de los cinco FTDFs a una concentración total 36 mM y disolviendo en acetonitrilo. XXX representa la mezcla de los cinco FTDFs. Los oligonucleótidos fueron desprotegidos en un vial con 400 µL de tiofenol y 100 µL de trietilamina por 2 h a 550C. Se recuperó el soporte por filtración y se trato entonces con 400 µL de hidroxido de amonio concentrado por 12 h a 550C, se concentró a sequedad por vacío y se resuspendió en agua estéril analizándolos por HPLC en una columna C18 ultrasphere de Beckman, utilizando un gradiente de acetonitrilo del 6% al 12% en 20 min en acetato de trietilamonio 100mM.

 

Referencias

1. Faber, K. Biotransformations in Organic Chemistry; Springer-Verlag: New York, 2000.         [ Links ]

2. Williams, J. C.; Zeelen, J. P.; Neubauer, G.; Vriend, G.; Backmann, J.; Michels, P. A.; Lambeir, A. M.; Wierenga, R. K. Protein Eng. 1999, 12, 243-250.         [ Links ]

3. You, L.; Arnold, F. H. Protein Eng. 1996, 9, 77-83.         [ Links ]

4. Brannigan, J. A.; Wilkinson, A. J. Nat. Rev. Mol. Cell. Biol. 2002, 3, 964-970.         [ Links ]

5. Zhao, H.; Chockalingam, K.; Chen, Z. Curr Opin Biotechnol 2002, 13, 104-110.         [ Links ]

6. Arkin, A. P.; Youvan, D. C. Biotechnology (N. Y.) 1992, 10, 297-300.         [ Links ]

7. Virnekas, B.; Ge, L.; Pluckthun, A.; Schneider, K. C.; Wellnhofer, G.; Moroney, S. E. Nucleic Acids Res. 1994, 22, 5600-5607.         [ Links ]

8. Lyttle, M. H.; Napolitano, E. W.; Calio, B. L.; Kauvar, L. M. Biotechniques 1995, 19, 274-281.         [ Links ]

9. Ono, A.; Matsuda, A.; Zhao, J.; Santi, D. V. Nucleic Acids Res 1995, 23, 4677-4682.         [ Links ]

10. Gaytán, P.; Yánez, J.; Sánchez, F.; Mackie, H.; Soberón, X. Chem. Biol. 1998, 5, 519-527.         [ Links ]

11. Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223-2311.         [ Links ]

12. Morrison, K. L.; Weiss, G. A. Curr. Opin. Chem. Biol. 2001, 5, 302-307.         [ Links ]

13. Cashion, P.; Porter, K.; Cadger, T.; Sathe, G.; Tranquilla, T.; Notman, H.; Jay, E. Tetrahedron Lett 1976, 42, 3769-3772.         [ Links ]

14. Katagiri, N.; Itakura, K.; Narang, S. A. J. Am. Chem. Soc. 1975, 97, 7332-7337.         [ Links ]

15. Sung, W. L. J.C.S. Chem. Comm. 1981, 1089.         [ Links ]

16. Reese, C. B.; Ubasawa, A. Tetrahedron Lett 1980, 21, 2265-2268.         [ Links ]

17. Chattopadhyaya, J. B.; Reese, C. B. Tetrahedron Lett 1979, 52, 5059-5062.         [ Links ]

18. van der Marel, G.; van Boeckel, C. A. A.; Wille, G.; van Boom, J. H. Tetrahedron Lett 1981, 22, 3887-3890.         [ Links ]

19. Reese, C. B.; Richards, K. H. Tetrahedron Lett. 1985, 26, 2245-2248.         [ Links ]

20. Kemal, O.; Reese, C. B.; Serafinowska, H. T. J. Chem. Soc. Chem. Commun. 1983, 591-593.         [ Links ]

21. Lehmann, C.; Xu, Y. Z.; Christodoulou, C.; Tan, Z. K.; Gait, M. J. Nucleic Acids Res 1989, 17, 2379-90.         [ Links ]

22. Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981, 22, 1859-1862.         [ Links ]

23 Gaytán, P.; Osuna, J.; Soberón, X. Nucleic Acids Res. 2002, 30, e84.         [ Links ]

 

Nota

1 Abreviaturas. FTDFs, Fmoc-trinucleósido-difosfato fosforamiditos; Fmoc-Cl, cloruro de fluoren-9-il-metoxicarbonilo; DMTr-Cl, cloruro de 4,4'-dimetoxitritilo; Im, imidazol; trz, 1,2,4-triazol; NMI, N-metilimidazol; DIPEA, N,N-diisopropiletilamina; MeOPCl(NiPr2), N,N-diisopropilaminometoxiclorofosfina; HOBt, 1-hidroxibenzotriazol; TBDMS-Cl, cloruro de terbutildimetilsilano; TBAF, fluoruro de tetrabutilamonio; dAbz, 6N-benzoil-desoxiadenosina; dCbz, 4N-benzoil-desoxicitidina; dGiBu, 2N-isobutiril-desoxiguanosina; T, timidina; iBu, isobutirilo; bz, benzoilo.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons