SciELO - Scientific Electronic Library Online

 
 número89Efectos de la extracción no controlada de madera sobre la comunidad y estructura de tamaños de los manglares de Alvarado, Veracruz, MéxicoMammillaria xaltianguensis (Cactaceae) en Jalisco índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Boletín de la Sociedad Botánica de México

versão impressa ISSN 0366-2128

Bol. Soc. Bot. Méx  no.89 México Dez. 2011

 

Restauración

 

Establecimiento de plántulas de Quercus rugosa Née inoculadas con hongos micorrizógenos arbusculares en un bosque templado de México

 

Establishment of Quercus rugosa Née seedlings inoculated with arbuscular mycorrhizal fungi in a temperate forest from México

 

Diego Olivera–Morales1, Silvia Castillo–Argüero1, Patricia Guadarrama2,José Ramos–Zapata3, Javier Álvarez–Sánchez1 y Laura Hernández–Cuevas4

 

1 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México.

2 Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México. Autor para la correspondencia: pguadarrama@ciencias.unam.mx.

3 Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán.

4 Laboratorio de Micorrizas, Universidad Autónoma de Tlaxcala.

 

Recibido: 24 de mayo de 2011
Aceptado: 20 de julio de 2011

 

Resumen

La Cuenca del Río Magdalena es continuamente deforestada, las estrategias de restauración ecológica incluyen a los hongos micorrizógenos arbusculares ya que facilitan el establecimiento y supervivencia de las plántulas. Con el objetivo de identificar las especies de hongos micorrizógenos arbusculares en la rizósfera de Quercus rugosa y evaluar su colonización en las raíces de Q. rugosa, se recolectaron muestras de suelo y raíces en un encinar. Con el fin de evaluar el crecimiento y supervivencia de plántulas de Q. rugosa inoculadas con hongos micorrizógenos arbusculares e introducidas al campo, se colocaron plántulas germinadas en sustrato estéril, en un invernadero en dos tratamientos: ausencia de hongos (suelo nativo esterilizado, – hongos micorrizógenos arbusculares) y presencia de hongos (suelo nativo, + hongos micorrizógenos arbusculares), y posteriormente fueron transplantadas a campo. Las plántulas del encinar presentaron más del 50% de colonización micorrícica y en la rizósfera se identificaron diez morfoespecies de hongos micorrizógenos arbusculares. En invernadero, las plantas + hongos micorrizógenos arbusculares presentaron mayor supervivencia; aunque las variables de crecimiento no presentaron diferencias significativas. La inoculación con hongos micorrizógenos arbusculares incrementó la supervivencia favoreciendo el establecimiento exitoso de plántulas de Q. rugosa en el encinar, lo que respalda su uso en programas de restauración ecológica.

Palabras clave: crecimiento, encinar, micorriza arbuscular, riqueza, supervivencia.

 

Abstract

The vegetation of the Magdalena river basin is continuously removed. The ecological restoration strategies include the use of arbuscular mycorrhizal fungi, since these fungi may increase the establishment and survivorship of plants in the field. To identify the arbuscular mycorrhizal fungi species from Quercus rugosa's rhizosphere and to estimate the fungi root colonization, root and soil were sampled. To evaluate the growth and survivorship of mycorrhizal plants, Q. rugosa seedlings were grown on two conditions (treatments): sterilized native soil (–arbuscular mycorrhizal fungi) and non–sterilized native soil (+arbuscular mycorrhizal fungi); afterwards, they were introduced to the field. We identified ten arbuscular mycorrhizal fungi species in the rhizosphere, mean values of root colonization were superior to 50%. The highest survivorship values were reported on + arbuscular mycorrhizal fungi treatment; although growth traits values did not show significant differences. Inoculation with arbuscular mycorrhizal fungi increased the establishment and survivorship of Q. rugosa's seedlings; these results support the use of arbuscular mycorrhizal fungi in ecological restoration programs.

Key words: arbuscular mycorrhiza, growth, oak forest, richness, survivorship.

 

Los bosques templados en México presentan una alta diversidad biológica, son considerados ecosistemas con gran potencial en el almacenamiento de carbono, ciclaje de agua y en la liberación de oxígeno (Dixon et al., 1994; Mur–Fugueras, 2003; Almeida–Leñero et al., 2007) y por medio de los cuales se provee, a la Cuenca de México, de una cantidad importante de agua. Los bosques de encino, en particular, ocupan casi una quinta parte del territorio mexicano (Rzedowski, 1978), ubicándose entre los tipos de vegetación más alterados, con una pérdida de cobertura de 8,795 hectáreas por año, lo que se traduce en una tasa de deforestación anual del 1.2% (Challenger, 1998; SEMARNAT, 2000).

Para revertir la degradación ocasionada y recuperar el funcionamiento original del ecosistema es necesaria la restauración ecológica, la cual puede incluir el empleo de herramientas biológicas como son los microorganismos del suelo (Requena et al., 2001). Dentro de la microbiota del suelo se encuentran los hongos micorrizógenos arbusculares (HMA), que forman una asociación mutualista con las raíces de las plantas. Dicha asociación provee a las plantas que la forman de una mayor superficie de absorción de iones (P y N) y agua del suelo, que se refleja en un incremento de la biomasa y supervivencia (Fisher y Jayachandran, 2002); además, les ofrece una mayor tolerancia a patógenos, a altas temperaturas, sequía, acidez del suelo y metales tóxicos (Linderman, 2000).

La presencia de propágulos de hongos micorrizógenos arbusculares y ectomicorrizógenos en ambientes perturbados, promueve el desarrollo de plantas de Pinus y Quercus (Dias et al., 2010). Sin embargo, durante los primeros meses de desarrollo de Quercus, parece ser más conspicua la micorriza arbuscular, la cual posteriormente es desplazada por la ectomicorriza (Lodge y Wentworth, 1990). Lo anterior, nos llevó a plantear la hipótesis de que la inoculación con HMA puede facilitar el establecimiento de plántulas de encino (Quercus rugosa) trasplantadas al campo al incrementar su supervivencia. Con el fin de falsear esta hipótesis, se caracterizó la comunidad de HMA en un bosque de encino a través de la identificación y cuantificación de las esporas presentes en la rizósfera y de la estimación del porcentaje de colonización en las raíces de individuos de Q. rugosa establecidos en condiciones naturales y que fueron clasificados como plántulas, juveniles y adultos, esto último con el objetivo de estimar el tiempo en que disminuye la colonización micorrícica arbuscular para ser sustituida por la ectomicorriza. Asimismo, se evaluó el efecto de los HMA en la supervivencia y crecimiento de plántulas de Q. rugosa transplantadas a un bosque de encino en la Cuenca del Río Magdalena, México, D. F.

 

Materiales y métodos

Zona de Estudio. Este trabajo se realizó en un encinar de la cuenca del río Magdalena (CRM), ubicada al límite suroccidental del Distrito Federal (19° 13' 53" y 19° 18' 12" N y 99° 14' 50" y 99° 20' 30" O); el clima es Cw, templado subhúmedo con lluvias en verano (García 1988); forma parte de la vertiente occidental de la sierra de las Cruces, dentro de la Faja Volcánica Transmexicana (Ontiveros–Delgado, 1980; Álvarez–Roman, 2000); abarca un intervalo altitudinal de 2,570 m al noreste, donde está limitada por la zona urbana, hasta los 3,850 m al suroeste (Ávila–Akerberg, 2002). Se pueden distinguir seis tipos de vegetación: bosque de Abies religiosa, bosque de Pinus, bosque de Quercus, matorral xerófilo, pastizal y bosque mesófilo de montaña (Rivera–Hernández y Espinosa–Henze, 2007). La cuenca del río Magdalena es un área de recarga hídrica (Mazari–Menzer, 2000) y presenta una gran diversidad florística, en donde Ávila–Akerberg (2002) estimó la presencia de 526 especies de fanerógamas.

Se estableció una parcela experimental de 100 × 100 m, en un encinar ubicado en la zona conocida como Segundo Dinamo, dentro de la CRM (19° 17' 0.98" N y 99° 19' 27.42" O). Los suelos son ligeramente ácidos (pH 5.5) con un alto contenido de materia orgánica (17%); baja capacidad de intercambio catiónico (47.44 cmol(+)kg–1 y baja concentración de P total (38 mg g–1) (Cuadro 1). Con una pendiente entre 24.5° y 17°, la profundidad del suelo fluctuó alrededor de los 20 cm y la temperatura del suelo se mantuvo en el tiempo de experimentación (2007–2008) entre 8 y 17 °C.

Caracterización de la comunidad de HMA. Esporas.– A lo largo de dos transectos de 100 m de largo, se tomaron 20 muestras compuestas de suelo de cinco kilogramos cada una, este suelo se usó para la separación e identificación de las morfoespecies de esporas y para la obtención del inóculo micorrícico para las plántulas crecidas en invernadero. La extracción de esporas se realizó mediante el método de tamizado húmedo y decantación, y centrifugación en agua y sacarosa (ver Hernández–Cuevas et al., 2008). Las esporas fueron montadas en portaobjetos y fijadas con PVLG (alcohol polivinílico, ácido láctico, glicerol) para su observación al microscopio óptico, cuantificación e identificación. La identificación de las especies de HMA se realizó con ayuda de claves taxonómicas y comparaciones con las descripciones de la International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi (INVAM) y Schüßler y Walker (2010).

Colonización micorrícica.– A lo largo de los transectos, se tomaron muestras de raíces finas de encinos de 13 individuos que fueron clasificados como plántulas (individuos con una altura < 15 cm), juveniles (con altura entre 15 cm y 1 m), y adultos (individuos con tallo leñoso > 1 m); se colocaron en bolsas, se etiquetaron y se llevaron al laboratorio. Las raíces colectadas se sometieron a un proceso de aclaración y tinción mediante la técnica descrita por Hernández–Cuevas et al. (2008), la cual consiste en lavar las raíces, colocarlas en KOH al 10% en autoclave a 15 lb de presión durante diez minutos, lavarlas nuevamente y colocarlas diez minutos más en HCl al 2% y, posteriormente, en azul de tripano al 0.05%. Una vez teñidas, se observaron bajo el microscopio óptico y se determinó el porcentaje de colonización por HMA contabilizando la frecuencia de ocurrencia de las diferentes estructuras (hifas, arbúsculos, esporas, vesículas y enrollamientos).

Efecto de los HMA en plántulas. Trabajo de invernadero y de campo.– En un invernadero de la Facultad de Ciencias (25 °C de temperatura y 80% de humedad relativa) se germinaron, en charolas con arena esterilizada, 500 semillas escarificadas de Quercus rugosa Née. Ocho semanas después, se cosecharon 20 plántulas para obtener la cosecha inicial (T1); se les midió el área foliar, posteriormente, se separó la raíz, tallo y hojas, y se secaron en un horno a 80 °C por 48 horas para obtener el peso seco. De las plántulas restantes, 240 permanecieron en suelo estéril del sitio de estudio (–HMA) y 240 fueron transplantadas a suelo no esterilizado del sitio de estudio (+HMA). Durante dos meses se mantuvieron en invernadero y, mensualmente, se le midió a cada plántula el diámetro a la base del tallo, la altura y el número de hojas, asimismo se tiñeron raíces de tres individuos de cada tratamiento por la técnica arriba descrita y se observó la presencia de colonización micorrícica. Al tercer mes de crecimiento, las plántulas fueron trasplantadas al campo de manera alternada en dos parcelas de 50 × 50 m, ubicadas dentro del encinar (Figura 1) y se continuaron con las mediciones mensuales (diámetro a la base del tallo, la altura y el número de hojas), asimismo se colectaron las raíces finas de tres individuos por tratamiento semanalmente y se determinó su porcentaje de colonización. Diez meses después del trasplante se realizó la cosecha final (T2) de 20 individuos de cada tratamiento. A cada individuo se le midió el área foliar, se obtuvo el peso seco por estructura como se mencionó previamente y se cuantificó la supervivencia.

Análisis de Datos. Se realizó un análisis de crecimiento clásico de Hunt (1982) considerando los datos de la primera y última cosecha (T1 y T2) para cada tratamiento (–HMA y +HMA), utilizando las variables: peso seco total (PST), proporción raíz–vástago (R/V) que indica la cantidad de biomasa de raíz en comparación con la biomasa de la parte aérea, área foliar (AF), proporción de área foliar (PAF) definida como la fracción de biomasa total que contribuye a hojas, área foliar específica (AFE) que indica la cantidad de área foliar por peso de hoja y tasa relativa de crecimiento (TRC) que nos revela el incremento en biomasa por unidad de tiempo. Para comprobar si la presencia de HMA influía sobre estas variables de crecimiento en las plántulas, se realizó un análisis de varianza (ANOVA, P < 0.05) (Zar, 1999). Para que se cumpliera con los supuestos del ANOVA, las variables altura y diámetro fueron transformadas por logaritmo natural. Como la altura de las plantas no fue la misma al momento de introducirlas al campo, se aplicó el ANOVA (P < 0.05) considerando como covariable la altura inicial. Cuando se presentaron diferencias significativas, se aplicó una prueba de comparación de medias de Tukey (α = 0.05) (Zar, 1999); se utilizó el paquete estadístico Statistica/w 5.1 (StatSoft, 1998). Asimismo, se realizó un análisis de supervivencia Log–Rank (Kaplan Meier) para comparar las curvas de ambos tratamientos y detectar diferencias significativas.

 

Resultados

Comunidad de HMA. Esporas.– Se identificaron diez morfoespecies de HMA que pertenecen a siete géneros: Acaulospora, Funneliformis, Gigaspora, Glomus, Pacispora, Redeckera y Scutellospora (Cuadro 2).

Colonización micorrícica.– Todos los individuos de Quercus rugosa (plántula, juvenil, adulto) presentaron colonización micorrícica arbuscular; el promedio fue de 56.11 ± 2.19%; el análisis estadístico no mostró diferencias significativas entre los estadios de Q. rugosa (F = 0.579, g.l. = 2, P = 0.578; Figura 2).

Efecto de los HMA en plántulas. Velocidad de colonización.– El porcentaje de colonización en las plántulas de Quercus rugosa aumentó de forma gradual durante los primeros 35 días, con un promedio de 0.85 ± 0.85% en la primera semana, incrementándose hasta un 32.22 ± 5.80% en la quinta semana (Figura 3).

Supervivencia de plántulas.– Las plántulas de Quercus rugosa presentaron valores elevados de supervivencia, 86% en +HMA y 75% en –HMA; el análisis de las curvas de supervivencia mostró diferencias significativas después de los diez meses del trasplante (Log–Rank 4.429, g.l. = 1, P = 0.035), siendo mayor la supervivencia de las plántulas en el tratamiento +HMA (Figura 4).

Crecimiento de plántulas.– Las plántulas de Quercus rugosa del tratamiento –HMA analizadas antes del transplante a campo no mostraron colonización micorrícica. Al cosechar las plantas de campo se observó que aunque las variables de crecimiento analizadas presentaron los mayores valores en el tratamiento +HMA, el análisis estadístico no mostró diferencias significativas. Al final del experimento, el ANOVA realizado mostró diferencias significativas únicamente para la proporción R/V, siendo mayor en el tratamiento +HMA (Cuadro 3, Figura 5).

 

Discusión

El bosque de Quercus de la CRM presenta en su rizósfera diez morfoespecies de HMA, valor similar a la riqueza reportada para otras comunidades de encinos, p. ej. ocho (Douhan et al., 2005) y seis especies (Öpik et al., 2006). Las especies de HMA descritas en este trabajo son nuevos registros para la CRM; aunque, ya han sido reportadas en algunos cultivos y en comunidades naturales y secundarias tropicales del país (Varela y Trejo, 2001).

Quercus rugosa presenta en sus raíces asociación con HMA, la asociación micorrícica entre especies del género Quercus y los HMA, ha sido reportada para Q. agrifolia (Egerton–Warburton y Allen, 2001), Q. rubra (Dickie et al., 2001) y Q. ilex (Dias et al., 2010). Dickie et al. (2004) han señalado que la colonización micorrícica arbuscular en encinos está asociada a las plantas aledañas. Sin embargo, en este trabajo se exploró la condición micorrícica tanto en condiciones de campo como de invernadero y, en ambos casos, se observó la asociación micorrícica arbuscular. Además, se detectaron esporas de HMA en la rizósfera de los encinos, propágulos que son potenciales colonizadores de raíces y que son los que promueven una rápida colonización (Filion et al., 2001).

Quercus presenta una temprana colonización micorrícica, lo que puede repercutir favorablemente en su supervivencia. La rápida velocidad de colonización de las raíces puede ser de gran importancia durante la primera etapa de desarrollo, ya que ayuda a las plántulas a superar situaciones de estrés como la sequía, reduciendo la pérdida de agua, además de soportar la presión por competencia con otras plantas, la depredación y el efecto de algunos patógenos (Harley y Smith, 1984).

Las especies leñosas presentan mayor biomasa en hojas (Villar et al., 2004), los resultados de este estudio muestran lo contrario, las plántulas de Quercus rugosa tuvieron una mayor proporción de biomasa en raíces. Esto puede relacionarse con el tiempo de desarrollo, ya que se ha demostrado que especies longevas tienen inicialmente mayor crecimiento en raíces y después de cuatro a seis años hay una disminución en biomasa radical de hasta 10% (Geldres et al., 2006) y con ello una mayor tasa de crecimiento como resultado de una mayor capacidad para capturar luz y dióxido de carbono (Villar et al., 2004).

Las plántulas inoculadas con HMA tuvieron mayor biomasa radical y con ello una mayor probabilidad de captura de agua y nutrientes, como el fósforo (Dighton y Coleman, 1992), que les permite sobrevivir en hábitats con recursos limitantes como es la CRM (Cuadro 1). El hecho de que no se observaran diferencias significativas en la mayoría de las variables de crecimiento en las plántulas inoculadas con HMA, contrasta con lo reportado por Dickie et al. (2001). Estos autores encontraron que la presencia de colonización micorrícica arbuscular en encinos promueve una mejor nutrición o crecimiento en individuos jóvenes de Q. rubra. Considerando que los individuos de Quercus son de crecimiento lento (Villar et al., 2004), el efecto de la inoculación con HMA en las variables de crecimiento podría observarse en un período de tiempo más largo, dos o tres años.

Es evidente que hace falta realizar más estudios para comprender el papel que juegan los HMA sobre el crecimiento de Quercus rugosa, especie que típicamente es colonizada por hongos ectomicorrizógenos. Hasta ahora, se ha documentado que los diferentes tipos de hongos micorrizógenos presentan capacidades fisiológicas diferentes que pueden maximizar la disponibilidad de nutrimentos bajo condiciones del suelo limitantes, lo cual puede incrementar la adecuación de la planta hospedera (Dighton y Coleman, 1992).

Los resultados obtenidos nos permiten concluir que la especie Quercus rugosa incrementa sus probabilidades de supervivencia en etapas tempranas de su desarrollo al asociarse con los HMA, por lo que la inoculación micorrícica arbuscular debe ser considerada si se pretenden realizar actividades de restauración y reforestación de los bosques de encino. También es importante mencionar que se debe realizar el análisis de la interacción micorrícica en las diferentes especies de plantas que se encuentran en el bosque de encino de la CRM; así como su efecto sobre su crecimiento para generar información que permita desarrollar estrategias tendientes a la restauración de los bosques de encino.

 

Agradecimientos

Este trabajo fue financiado por los proyectos, Manejo de Ecosistemas y Desarrollo Humano (UNAM, SDE–PTID–02) y PAPIIT (IN200906–3). Nuestro agradecimiento a Yuriana Martínez Orea, Oswaldo Nuñez Castillo y Marco Antonio Romero Romero por su apoyo en el trabajo de campo y gabinete.

 

Literatura citada

Almeida–Leñero L., Nava M., Ramos A., Espinosa M., Ordoñez M.J. y Jujnovsky J. 2007. Servicios ecosistémicos en la cuenca del río Magdalena, Distrito Federal, México. Gaceta Ecológica 84–85:53–64.         [ Links ]

Álvarez–Roman K.E. 2000. Geografía de la educación ambiental: Algunas propuestas de trabajo en el bosque de los Dinamos, área de conservación ecológica de la Delegación Magdalena Contreras. Tesis de Licenciatura. Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México, México, D.F. 127 pp.         [ Links ]

Ávila–Akerberg V.D. 2002. La vegetación de la cuenca alta del río Magdalena: un enfoque florístico, fitosociológico y estructural. Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F. 92 pp.         [ Links ]

Challenger A. 1998. Utilización y Conservación de los Ecosistemas Terrestres de México. Pasado, Presente y Futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Instituto de Biología–Univeridad Nacional Autónoma de México–Agrupación Sierra Madre S.C., México D.F.         [ Links ]

Dias J.M., Oliveira R.S., Franco A.R., Ritz K., Nunan N. y Castro P.M.L. 2010. Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire–impacted soils from two target restoration sites. Spanish Journal of Agricultural Research 8(S1):S86–S95.         [ Links ]

Dickie I.A., Koide R.T. y Fayish A.C. 2001. Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytologist 151:257–264.         [ Links ]

Dickie I.A., Guza R.C., Krazewski S.E. y Reich P.B. 2004. Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytologist 164:375–382.         [ Links ]

Dighton J. y Coleman D.C. 1992. Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians, North Carolina. Mycorrhiza 1:175–184.         [ Links ]

Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C. y Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185–190.         [ Links ]

Douhan G.W., Petersen C., Bledsoe C.S. y Rizzo D.M. 2005. Contrasting root associated fungi of three common oak–woodland plant species based on molecular identification: host specificity or non–specific amplification? Mycorrhiza 15:365–372.         [ Links ]

Egerton–Warburton L. y Allen M.F. 2001. Endo– and ectomycorrhizas in Quercus agrifolia Née. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290.         [ Links ]

Filion M., St–Arnaud M., Guillon C., Hamel C. y Jabaji–Hare S.H. 2001. Suitability of Glomus intraradices in vitro produced spores and root segment inoculum for the establishment of a mycorrhizosphere in an experimental microcosm. Canadian Journal of Botany 79:879–885.         [ Links ]

Fisher J.B. y Jayachandran K. 2002. Arbuscular mycorrhizal fungi enhance seedling growth in two endangered plant species from South Florida. International Journal of Plant Sciences 163:559–566.         [ Links ]

García E. 1988. Modificaciones al Sistema de Clasificación Climática de Köppen. Editado por la autora, México, D.F.         [ Links ]

Geldres E., Gerding V. y Schlatter J.E. 2006. Biomasa de Eucalyptus nitens de 4–7 años de edad en un rodal de la X Región, Chile. Bosque 27:223–230.         [ Links ]

Harley J.L. y Smith S.E. 1983. Mycorrhizal Simbiosis. Academic Press, Londres.         [ Links ]

Hernández–Cuevas L., Guadarrama–Chávez P., Sánchez–Gallén I. y Ramos–Zapata J. 2008. Micorriza arbuscular: colonización intrarradical y extracción de esporas. En: Álvarez–Sánchez J. y Monroy–Ata A. Comps. Técnicas de Estudio de las Asociaciones Micorrízicas y sus Implicaciones en la Restauración, pp. 1–15, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F.         [ Links ]

Hunt R. 1982. Plant Growth Curves. The Functional Approach to Plant Growth Analysis. Edward Arnold, Londres.         [ Links ]

INVAM [International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi] <invam.caf.wvu.edu> (consultado enero 2010).         [ Links ]

Linderman R.G. 2000. Effects of mycorrhizas on plant tolerance to diseases. En: Kapulnik Y. y Douds D.D. Jr. Eds. Arbuscular Mycorrhizas: Physiology and Function, pp. 345–365, Kluwer Academis Publishers, Dordrecht.         [ Links ]

Lodge D.J. y Wentworth T.R. 1990. Negative associations among VA–mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57:347–356.         [ Links ]

Mazari–Menzer M. 2000. Dualidad Población–Agua: Inicio del Tercer Milenio. El Colegio Nacional, México, D.F.         [ Links ]

Mur–Fugueras P. 2003. Patrones de distribución geográfica de especies del género Quercus y de algunos de sus insectos formadores de agallas en el estado de Michoacán, México. Tesis de Maestría. Maestría en Ciencias (Ecología y Ciencias Ambientales)–Universidad Nacional Autónoma de México, México D.F. 58 pp.         [ Links ]

Ontiveros–Delgado A. 1980. Análisis físico y algunos aspectos socioeconómicos de la cuenca del río Magdalena. Tesis de Licenciatura. Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México, México D.F. 103 pp.         [ Links ]

Öpik M., Moora M., Liira J. y Zobel M. 2006. Composition of root–colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94:778–790.         [ Links ]

Requena N., Perez–Solis E., Azcón–Aguilar C., Jeffries P. y Barea J.M. 2001. Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology 67:495–498.         [ Links ]

Rivera–Hernández J.E. y Espinosa–Henze A. 2007. Flora y vegetación del Distrito Federal. En: Luna I., Morrone J.J. y Espinosa D. Eds. Biodiversidad de la Faja Volcánica Transmexicana, pp. 231–253, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Universidad Nacional Autónoma de México, México D.F.         [ Links ]

Rzedowski J. 1978. Vegetación de México. Limusa, México D.F.         [ Links ]

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2000. Inventario Nacional Forestal 2000. Secretaría del Medio Ambiente y Recursos Naturales–Universidad Nacional Autónoma de México, México D. F.         [ Links ]

StatSoft. 1998. Statistica II for Windows. StatSoft, Inc., Tulsa.         [ Links ]

Schüßler A. y Walker C. 2010. The Glomeromycota. A Species List with New Families and New Genera. Arthur Schüßler & Christopher Walker, Gloucester Disponible en línea: <http://www.lrz.de/~schuessler/amphylo/Schuessler&Walker2010_Glomeromycota.pdf>         [ Links ].

Varela L. y Trejo D. 2001. Los hongos micorrizógenos arbusculares como componentes de la biodiversidad del suelo en México. Acta Zoologica Mexicana (nueva serie), Número especial 1:39–51.         [ Links ]

Villar R., Ruiz–Robleto J., Quero J.L., Poorter H., Valladares F. y Marañón T. 2004. Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. En: Valladares F. Ed. Ecología del Bosque Mediterráneo en un Mundo Cambiante, pp. 191–227, Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales, Madrid.         [ Links ]

Zar J. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons