SciELO - Scientific Electronic Library Online

 
vol.32 número2Estimación de la densidad y abundancia de la nutria neotropical (Lontra longicuadis annectens Olfers, 1818) en el Sistema Lagunar de Alvarado, VeracruzAspectos ecológicos de la nutria neotropical, Lontra longicaudis annectens (Major, 1897) en la laguna La Lagartera, Campeche, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Hidrobiológica

versão impressa ISSN 0188-8897

Hidrobiológica vol.32 no.2 Ciudad de México Mai./Ago. 2022  Epub 26-Jun-2023

https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n2/arzate 

Artículos de investigación

Effect of diet and temperature on the culture of Alona guttata (Sars, 1862) (Cladocera: Chydoridae) under laboratory conditions

Efecto de la dieta y temperatura en el cultivo de Alona guttata (Sars, 1862) (Cladocera: Chydoridae) en condiciones de laboratorio

Olga Cristal Osorio-Treviño1 

Mario Alberto Arzate-Cárdenas1  2  * 
http://orcid.org/0000-0001-5224-7687

Roberto Rico-Martínez1 
http://orcid.org/0000-0002-7776-9542

1Laboratorio de Toxicología Acuática, Departamento de Química, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Ciudad Universitaria, Aguascalientes, 20131. México.

2Investigadores por México, Consejo Nacional de Ciencia y Tecnología. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México, 03940. México.


ABSTRACT

Background

Chydoridae is the most diverse family of cladocerans but information about their biology or life cycles is still limited, perhaps because of the hard task that their taxonomy involves or that culture in optimal conditions are not described for several species.

Goals

This study examined the effects of culture conditions (algal concentration, algal species, and temperature) on the demography of Alona guttata (Sars, 1862) to obtained their maximal growth rates.

Methods

Life table analysis with the chydorid A. guttata were performed as follows: five females per cohort (six replicas) were fed on either Chlorella vulgaris (Beijerinck, 1890) or Nannochloropsis oculata (Hibberd, 1981) at 0.5×106 or 2×106 cells/mL, reared at 20ºC or 25ºC and photoperiod 16:8 h (light: dark). Media was supplemented with an artificial substrate. Then, daily fertility and survival were assessed to estimate the demographic parameters: average lifespan (ALS), life expectancy at birth (LEB), generation time (GT), gross reproductive rate (GRR), longevity, net reproductive rate (NRR), and the intrinsic rate of population increase (r).

Results

Significant effects were observed due to the three factors tested and their interactions. Increasing algal concentrations of either C. vulgaris or N. oculata promoted higher fertility and longer survival. Lower temperature extended the ALS and LEB when organisms were fed on the highest algal concentration. The highest r values were observed when Alona was fed on N. oculata at 2×106 cells/mL.

Conclusions

The best culture conditions, in terms of the population growth rates of A. guttata, were provided by N. oculata at 2×106 cells/mL at 25°C with the supplementation of artificial substrate.

Keywords: Anomopoda; demographic parameters; fertility; life table analysis; survival

RESUMEN

Antecedentes

La familia Chydoridae es la más diversa de los cladóceros pero la información acerca de su biología o sus ciclos de vida es aún limitada, posiblemente por la dificultad que representa su taxonomía o porque las condiciones óptimas de cultivo no han sido descritas para varias especies.

Objetivos

Este estudio examina los efectos de las condiciones de cultivo (concentración de algas, especie de alga, y temperatura) en la demografía de Alona guttata (Sars, 1862) para obtener sus mayores tasas de crecimiento.

Métodos

Se realizaron análisis de tablas de vida con el quidórido A. guttata de la manera siguiente: cinco hembras por cohorte (seis réplicas) fueron alimentadas con Chlorella vulgaris (Beijerinck, 1890) o Nannochloropsis oculata (Hibberd, 1981), a una concentración de 0.5×106 o 2×106células/mL, con una temperatura de 20°C o 25°C, y un fotoperiodo de 16:8 h (luz:oscuridad). Al medio de cultivo se adicionó un sustrato artificial. Posteriormente, la fertilidad y supervivencia diarias fueron evaluadas para estimar los parámetros poblacionales: promedio de vida (ALS), expectativa de vida al nacimiento (LEB), tiempo generacional (GT), tasa reproductiva bruta (GRR), longevidad, tasa reproductiva neta (NRR), y la tasa intrínseca de crecimiento poblacional (r).

Resultados

Se observaron efectos significativos debidos a los tres factores evaluados y sus interacciones. El aumento de la concentración de las algas C. vulgaris o N. oculata incrementó la fertilidad y supervivencia. La menor temperatura extendió la ALS y la LEB cuando los organismos fueron alimentados con la concentración más alta de algas. Las r más altas se observaron cuando Alona fue alimentada con N. oculata a 2×106 células/mL.

Conclusiones

Las mejores condiciones de cultivo, en términos de la tasa de crecimiento poblacional de A. guttata, fueron provistas por N. oculata a 2×106 cells/mL, a 25°C, con la adición del sustrato artificial.

Palabras clave: análisis de tabla de vida; Anomopoda; fertilidad; parámetros demográficos; supervivencia

INTRODUCTION

Chydoridae is the most diverse family within cladocerans, but information regarding their culture and biology is still scarce in comparison to other families like Daphniidae and Moinidae. In natural environments, fish larvae can feed on little size species like chydorids, which are preferably consumed over other large cladocerans, likely because of their ease to capture (Nunn et al., 2012). Chydorids, which inhabit littoral zones of water bodies, are generally associated to aquatic plants, periphyton, or sediment (Dole-Olivier et al., 2000; Masclaux et al., 2012). Thus, different media have been developed to culture chydorids in laboratory conditions, feeding these organisms on algae, bacteria, detritus, yeast, or combinations of these sources of organic matter (Martínez-Jerónimo & Gomez-Díaz, 2011).

Castilho et al. (2015) stated that the study of the life cycle of cladocerans offers a better understanding of their biology, and at higher hierarchy level provide information about population dynamics, their interactions with the surroundings, and their role within food webs and secondary production.

Alona guttata (Sars, 1862) is a cosmopolitan species, with records in several places around the world (Sinev & Siva-Briano, 2012; Sousa et al., 2014). Cortez-Silva et al. (2022) described the life history of A. guttata fed on Raphidocelis subcapitata (Korshikov) Nygaard, Komárek, J.Kristiansen & O.M.Skulberg 1987, and the strategies that this species might follow to rapidly colonize temporal and transitory ponds. Alvarado-Suárez (2017) implemented this chydorid to nourish the goodeid fish Poeciliopsis infans (Woolman, 1894) and concluded that A. guttata is of high nutritional value but their usage is limited due to poor biomass production. Therefore, this study was aimed to assess the effect of the food source, algal concentration, and temperature on the demography of A. guttata through life table analysis and find the best culture conditions in terms of the population growth rates.

MATERIAL AND METHODS

Maintenance of chydorids. The strain of A. guttata has been maintained in the Laboratory of Aquatic Toxicology of the Universidad Autónoma de Aguascalientes (UAA) and was cultured with the following conditions: moderately hard reconstituted water (MHRW) (USEPA, 2002), photoperiod 16h light and 8h dark, fed once a day ad libitum with either the green algae Chlorella vulgaris (Beijerinck, 1890) or Nannochloropsis oculata (Hibberd, 1981), and temperature at either 20°C or 25°C ± 2ºC. Freshwater media was supplemented with 660 mg/L of artificial substrate, which consisted of 70% silica sand, 25% kaolin, and 5% dried and ground cattle manure. The complete mixture of the substrate was sterilized by autoclave at 15 psi for 20 min (Martínez-Jerónimo & Gómez-Díaz, 2011).

Algal biomass as food source for chydorids. Chlorella vulgaris and N. oculata were grown in Bold’s Basal medium (Nichols, 1973) under aseptic conditions at 25ºC. Continuous illumination was provided by day-light fluorescent lamps (approximately 5000 lux). Algal biomass was collected during the exponential phase of population growth and separated from the culture medium by centrifugation at 5000 rpm for 5 min. Then, culture media for chydorids were supplemented with either C. vulgaris or N. oculata at low (0.5×106 cells/mL) and high densities (2×106 cells/mL).

Effect of diet and temperature on Alona guttata. Cohorts of five neonates (less than 24-h old) of A. guttata were placed separately in a 24-well polystyrene microplate; then, every well was supplemented with the corresponding algal suspension in MHRW and adjusted to a final volume of 2 mL. Temperature was controlled in bioclimatic chambers at either 20ºC or 25ºC ± 2ºC with a photoperiod of 16 h light and 8 h dark. To avoid desiccation, 200 μL of distilled water were added every other day to each well. Complete renewal of the culture media was performed once a week. Fertility and survival data were daily recorded until all individuals in the cohort had died. The neonates and dead organisms were removed and counted daily. All treatments consisted of six replicas (n = 6).

Life table analysis. Data of survival (lx) and fertility (mx) were used to determine: average lifespan (ALS) (days), maximum longevity (days), life expectancy at birth (LEB) (days), generation time (GT) (days), gross reproductive rate (GRR) (neonates/female), net reproductive rate (NRR) (neonates/female), and intrinsic rate of population increase (r) (1/days) (Pianka, 1978; Krebs, 1985):

Average lifespan

A L S=0Ix

Life expectancy at birth

LEB=TxIx

Gross reproductive rate

GRR=0mx

Net reproduction rate

NRR= =0Ixmx

Generation time

GT=IxmxxNRR

The intrinsic rate of population increase (IRPI) was computed through iteration with the Euler-Lotka equation:

x0ne-rxIxmx=1

Statistical Analysis. Results from the life table experiments were analyzed through three-way analysis of variance (ANOVA). Significant differences were established through Bonferroni´s multiple comparison test. Statistical analysis were performed in R-Studio v.1.0.143 and the packages agricolae v.1.2-4 (De Mendiburu, 2016) and ggplot2 v.3.2.1 (Wickham, 2016).

RESULTS

Figure 1 shows the survival curves for A. guttata raised at 20ºC or 25ºC and fed on 0.5×106 or 2×106 cells/mL of either C. vulgaris or N. oculata. The longer survival rates were recorded when organisms were reared at 20°C in medium supplemented with N. oculata. Chydorids fed on N. oculata (2×106 cells/mL) and grown at 20°C delayed until the day 40 of the test to exhibit the first females to die, while at 25°C dead organisms appeared since the day 30. Temperature alone seemed to have no significant effect on the survival of A. guttata, but it was influenced by the interaction of temperature×algal concentration and temperature×algal species.

Figure 1 Survival (lx) of Alona guttata (Sars, 1862) fed on Chlorella vulgaris (Beijerinck, 1890) and Nannochloropsis oculata (Hibberd, 1981). Error bars represent the confidence interval (P<0.05). All experiments were carried out with six replicates (n = 6). 0.5 = 0.5×106 cells/mL; 2 = 2×106 cells/mL; Cv = C. vulgaris; Noc = N. oculata; 20 and 25 = temperature in Celsius. 

Figure 2 shows the daily fertility of the eight treatments. Alona guttata produced offspring during almost their entire life cycle, although the number of neonates per reproductive episode was in general low. Maximum values of longevity were recorded for every treatment, with the highest values (60.33 ± 0.8164 d) when organisms were fed on N. oculata at 2×106 cells/mL (Fig. 2). The highest longevity was recorded for the group fed on C. vulgaris (49.17 ± 1.8348 d). In general, the concentration of 0.5×106 cells/mL probed to be insufficient to promote longer longevity in Alona. These results were influenced mainly by the algal species and the algal concentration but were not significantly affected by temperature (Table 1).

Figure 2 Fertility (mx) of Alona guttata (Sars, 1862) fed on Chlorella vulgaris (Beijerinck, 1890) and Nannochloropsis oculata (Hibberd, 1981). Error bars represent the confidence interval (P<0.05). All experiments were carried out with six replicates (n = 6). 0.5 = 0.5×106 cells/mL; 2 = 2×106 cells/mL; Cv = C. vulgaris; Noc = N. oculata; 20 and 25 = temperature in Celsius. 

Table 1 Analysis of variance performed on the demographic responses of Alona guttata fed on Chlorella vulgaris or Nannochloropsis oculata. ALS, average lifespan (days); longevity, maximum longevity recorded by replicate (days); LEB, life expectancy at birth (days); GT, generation time (days); GRR, gross reproductive rate (neonates/female); NRR, net reproductive rate (neonates/female); IRPI, intrinsic rate of population increase, 1/days. 

Factor or interaction Df Sum Sq Mean Sq F value Pr(>F)
ALS Algal species 1 585.20 585.20 86.207 < 0.001 ***
Algae concentration 1 2,192.40 2,192.40 322.966 < 0.001 ***
temperature 1 7.70 7.70 1.131 0.294
Algal species × algae concentration 1 588.00 588.00 86.619 < 0.001 ***
Algal species × temperature 1 9.40 9.40 1.379 0.247
Algae concentration × temperature 1 162.80 162.80 23.983 < 0.001 ***
Algal species × algae concentration × temperature 1 40.30 40.30 5.942 0.019 *
Residuals 40 271.50 6.80
 
Longevity Algal species 1 574.10 574.10 123.903 < 0.001 ***
Algae concentration 1 2,352.00 2,352.00 507.626 < 0.001 ***
temperature 1 36.80 36.80 7.932 0.007 **
Algal species × algae concentration 1 225.30 225.30 48.633 < 0.001 ***
Algal species × temperature 1 0.70 0.70 0.162 0.689
Algae concentration × temperature 1 161.30 161.30 34.82 < 0.001 ***
Algal species × algae concentration × temperature 1 0.30 0.30 0.072 0.79
Residuals 40 185.30 4.60
 
LEB Algal species 1 585.20 585.20 86.207 < 0.001 ***
Algae concentration 1 2,192.40 2,192.40 322.966 < 0.001 ***
temperature 1 7.70 7.70 1.131 0.294
Algal species × algae concentration 1 588.00 588.00 86.619 < 0.001 ***
Algal species × temperature 1 9.40 9.40 1.379 0.247
Algae concentration × temperature 1 162.80 162.80 23.983 < 0.001 ***
Algal species × algae concentration × temperature 1 40.30 40.30 5.942 0.019 *
Residuals 40 271.50 6.80
 
GT Algal species 1 38.00 38.00 23.624 < 0.001 ***
Algae concentration 1 287.00 287.00 178.412 < 0.001 ***
temperature 1 2.13 2.13 1.327 0.256
Algal species × algae concentration 1 22.12 22.12 13.754 < 0.001 ***
Algal species × temperature 1 8.80 8.80 5.469 0.024 *
Algae concentration × temperature 1 44.93 44.93 27.929 < 0.001 ***
Algal species × algae concentration × temperature 1 15.82 15.82 9.832 0.003 **
Residuals 40 64.34 1.61
 
GRR Algal species 1 0.50 0.50 0.12 0.731
Algae concentration 1 148.50 148.50 35.662 < 0.001 ***
temperature 1 318.10 318.10 76.38 < 0.001 ***
Algal species × algae concentration 1 1.90 1.90 0.467 0.498
Algal species × temperature 1 161.10 161.10 38.68 < 0.001 ***
Algae concentration × temperature 1 11.30 11.30 2.724 0.107
Algal species × algae concentration × temperature 1 104.30 104.30 25.052 < 0.001 ***
Residuals 40 166.60 4.20
 
NRR Algal species 1 254.80 254.80 180.248 < 0.001 ***
Algae concentration 1 875.50 875.50 619.253 < 0.001 ***
temperature 1 1.30 1.30 0.896 0.349
Algal species × algae concentration 1 404.80 404.80 286.343 < 0.001 ***
Algal species × temperature 1 9.90 9.90 7.003 0.012 *
Algae concentration × temperature 1 106.20 106.20 75.12 < 0.001 ***
Algal species × algae concentration × temperature 1 33.70 33.70 23.813 < 0.001 ***
Residuals 40 56.60 1.40
 
IRPI Algal species 1 0.00696 0.00696 48.194 < 0.001 ***
Algae concentration 1 0.01844 0.01844 127.632 < 0.001 ***
temperature 1 0.00109 0.00109 7.541 0.009 **
Algal species × algae concentration 1 0.02120 0.02120 146.711 < 0.001 ***
Algal species × temperature 1 0.00108 0.00108 7.452 0.009 **
Algae concentration × temperature 1 0.00009 0.00009 0.654 0.424
Algal species × algae concentration × temperature 1 0.00039 0.00039 2.71 0.108
Residuals 40 0.00578 0.00014

From the life table analysis, Alona guttata showed the longest ALS values when feeding on algal densities of 2×106 cells/mL (Fig. 3). Significant interactions were recorded for algal species×algal concentration (P<0.01), algal concentration×temperature (P<0.01), algae species×algae concentration×temperature (P<0.05) (Table 1). The ALS presented values from 26.97 (SD = 3.2752) to 53 d (SD = 1.8199), with N. oculata as the best food source for this chydorid when it was supplemented at 2×106 cells/mL.

Figure 3 Demographic responses of Alona guttata fed on Chlorella vulgaris (Beijerinck, 1890) and Nannochloropsis oculata (Hibberd, 1981). ALS = average life span, GT = generation time, LEB = life expectancy at birth, GRR = gross reproductive rate, NRR = net reproductive rate, and IRPI = rate of population increase. All experiments were carried out with six replicates (n = 6). 0.5 = 0.5×106 cells/mL; 2 = 2×106 cells/mL; Cv = C. vulgaris; Noc = N. oculata; 20 and 25 = temperature in Celsius. Significant differences were established by factorial ANOVA and multiple comparison test of Bonferroni (P<0.05) 

The life expectancy at birth (LEB) was mainly affected by the algal species and algae concentration; thus, obtaining the highest LEB value (52.50 d) with N. oculata (2×106 cells/mL) at 20ºC (Fig. 3). Significant interactions were registered for algae concentration×algal species, algae concentration×temperature, and for the three factors tested (Table 1).

The highest GT (27.28 ± 0.8018 days) was recorded when chydorids fed on N. oculata (2×106 cells/mL) and reared at 20ºC (Fig. 3). The lowest GTs were observed with the organisms fed on either C. vulgaris or N. oculata at 0.5×106 cells/mL. The two temperatures tested caused no significant differences in the GT of A. guttata, although their interactions significantly affected the GT (Table 1).

GRR was influenced by the algal concentration of both algal species (Table 1); then, organisms fed on 0.5×106 cells/mL produced fewer neonates than the organisms fed on 2×106 cells/mL. Thereafter, N. oculata at the highest algal density promoted A. guttata to have more neonates during their whole life cycle (Fig. 3).

The NRR registered the highest value with the females fed on N. oculata at 2×106 cells/mL (28.86 ± 0.8547 neonates/female), while those organisms fed on C. vulgaris produced fewer neonates, even when C. vulgaris was supplemented at 2×106 cells/mL (Fig. 3).

Finally, the treatment that promoted the higher rates of population increase was N. oculata at 2×106 cells/mL and temperature at 25°C (r = 0.2656 ± 0.0163). The fed on C. vulgaris did not reach the same population growth rates in comparison to the groups fed on N. oculata. Alona guttata fed on C. vulgaris exhibited similar growth rates than those females fed on N. oculata at 0.5×106 cells/mL (Fig. 3).

DISCUSSION

Although there are several reports on chydorid species, information on their life cycle or reproductive biology is still scarce. Therefore, the main contributions of this study are: a) the insights on A. guttata asexual reproduction since neither males nor ephipia were detected while carrying out the different experiments during this research; and b) the culture conditions that promoted the highest rates of population increase to obtain higher number of individuals for further usage, as food source for early life stages of fish (Alvarado-Suárez, 2017) or as test organisms in environmental toxicology (Garza-León et al., 2017; Osorio-Treviño et al., 2019).

The maximum survival of A. guttata was comprised within values reported for other chydorids (Table 2). The longest survival within the family Chydoridae were reported for organisms grown at 5°C, reaching values of about 100 d. In the subfamily Aloninae survival has registered values of up to 90 d. For instance, Cortez-Silva et al. (2022) reported that longevity of A. guttata reached 37 d as maximum (30.9 d average) when chydorids were fed on R. subcapitata, but we found that this species can survive longer when feeding on either C. vulgaris or N. oculata. It is worth pointing out that food source and temperature influenced longevity of organisms and several publications reported no more than one food source or temperature. Although several results showed long survival of chydorids, some others might be explored to improve the survival of organisms.

Table 2 Comparison of the life cycle and demographic responses of chydorids from this study and reported in the literature. GT, generation time (days); GRR, gross reproductive rate (neonates/female); NRR, net reproductive rate (neonates/female); IRPI, intrinsic rate of population increase; T, temperature 

Species T (°C) Survival (d) GT GRR NRR IRPI Reference
Acroperus harpae (Baird, 1834) 5 - 25 9 - 119 5.3 - 70.4 Bottrell, 1975
Alona affinis (Leydig, 1860) 5 - 20 37 - 144 16.9 - 72.9 Bottrell, 1975
A. guttata (Sars, 1862) 22 37 Cortez-Silva et al., 2002
20 - 25 This study
A. iheringula (Sinev & Kotov, 2004) 25 54 5.0 Silva et al., 2014
Alonella excisa (Fischer, 1854) 73 Sharma & Sharma, 1998
Chydorus pubescens (Sars, 1901) 23.6 31 4.3 Santos-Wisniewski et al., 2006
C. sphaericus (Müller, 1776) 5 - 20 23 - 96 8.9 - 38.5 Bottrell, 1975
15 - 25 10.3 - 24.9 19.04 - 34.96 0.143 - 0.268 Keen, 1967 (cited by Hann 1985)
Coronatella rectangula (Sars, 1862) 25 26.92 - 30.82 10.2 - 10.6 18.0 - 18.8 19 - 27.12 0.25 - 0.26 Muro-Cruz et al., 2002
23.6 28.4 4.2 Viti et al., 2013
Disparalona rostrata (Koch, 1841) 10 - 19 30 - 80 18.8 - 35.5 Robertson, 1988
Euryalona orientalis (Daday, 1898) 28-30 24 Venkataraman, 1990
Eurycercus lamellatus (Müller, 1776) 5 - 20 42 - 162 19.1 - 100.5 Bottrell, 1975
E. longirostris (Hann, 1982) 16 - 24 16 - 19 16.9 - 28.3 10.45 - 13.25 0.083 - 0.153 Hann, 1985
E. vernalis (Hann, 1982) 16 - 24 16 - 17 16.5 - 32.5 8.53 - 10.12 0.071 - 0.130 Hann, 1985
10 - 25 35.50 - 79.7 15.2 - 53.2 69 - 135 0.08 - 0.310 Lemke & Benke, 2004
Graptoleberis testudinaria (Fischer, 1851) 5 - 20 23 - 95 9.5 - 44.6 Bottrell, 1975
Karualona muelleri (Richard, 1897) 23 - 26 17 0.180 Panarelli et al., 2019
Leydigia acanthocercoides (Fischer, 1854) 29 23 4.7 Murugan & Job, 1982
L. ciliata (Gauthier, 1939) 28-30 46 Venkataraman, 1990
L. leydigi (Schödler, 1863) 5 - 19 21 - 120 10.1 - 63.9 Robertson, 1988
L. louisi mexicana (Kotov, Elías-Gutiérrez & Nieto, 2003) 20 - 25 58 - 97 18.2 - 36.8 17.34 - 24.86 0.120 - 0.190 Martínez-Jerónimo & Gómez-Díaz, 2011
Oxyurella longicaudis (Birge, 1910) 23 47 7.50 Castilho et al., 2015
Pleuroxus aduncus (Jurine, 1820) 25 16 - 44 7.4 - 14.4 1.04 - 13.8 6.47 - 0.53 -0.091 - 0.149 Nandini & Sarma, 2000
P. denticulatus (Birge, 1879) 15 - 25 8.4 - 25 4.92 - 10.96 0.096 - 0.174 Keen, 1967 (cited by Hann 1985)
P. uncinatus (Baird, 1850) 5 - 20 31 - 132 13.6 - 78.3 Bottrell, 1975

The NRR in chydorids can take values from 6 to 135 neonates per female, with the highest reproduction rates in the genus Eurycercus (Table 2). In A. guttata the NRR was influenced by the algae concentration and the algal species, reaching the highest values at 2×106 cells/mL with N. oculata as food source. On this regard, Muro-Cruz et al. (2002) found no significant differences in the NRR of Coronatella rectangula (Sars, 1861) (formerly Alona rectangula) when feeding on C. vulgaris at 0.5 and 2×106 cells/mL (NRR = 14.72 ± 0.62 and 13.22 ± 0.77 neonates/female, respectively); however, A. guttata showed significant differences when fed on increasing algal concentrations, reaching higher reproductive rates, GRR and NRR, when organisms were fed on C. vulgaris or N. oculata at 2×106 cells/mL, which improved the reproductive performance of A. guttata.

The GT in chydorids varies significantly as a function of food source, food density, and temperature, taking values from some days (about 10 d) up to 100 d (Table 2). The longest GT were reported for organisms within the subfamily Chydorinae, like Acroperus harpae (Baird, 1834) and Eurycercus lamellatus (Müller, 1776) when they were grown at 5 °C, but increasing temperature to 25°C promoted significantly lower values of 5.30 d and 19.08 d, respectively. In the subfamily Aloninae, the longest GT was reported for Alona affinis (Leydig, 1860) (72.88 d at 5°C) while C. rectangula presented the shorter GT (4.16 d at 23.6°C) (Table 2). Thus, the GT of A. guttata (17.82 ± 1.15 to 27.28 ± 0.80 d) is similar to the values reported for other chydorid species. Bottrell (1975) stated that the interaction of abundant food supply and increasing temperature promote shorter times for every developmental stage in chydorids, thus, the GT can be shorten as it was observed within the group of A. guttata fed on N. oculata (2×106 cells/mL). On the other side, Muro-Cruz et al. (2002) found no significant differences for the GT of C. rectangula fed on C. vulgaris at either 0.5×106 or 2×106 cells/mL.

For chydorids, the intrinsic rate of population increase (r) is generally accepted to take low values, which are in most cases below or near 0.2/d (Martínez-Jerónimo & Gómez-Díaz, 2011; Nandini et al., 2007), with the exception of some species of the genus Eurycercus, which can reach high values for chydorids of up to 0.310/d (Table 2). Furthermore, the intrinsic rates of population increase are affected by temperature, for instance, Hann (1985) found that increasing temperatures promoted higher reproductive rates in chydorids by decreasing egg maturation times; therefore, in four species the highest “r” values were recorded at 24 - 25ºC. Despite A. guttata presented high growth rates in comparison to Pleuroxus aduncus (Jurine, 1820) 0.15/d (Nandini & Sarma, 2000), or very similar to those of C. rectangula or Karualona muelleri (Richard, 1897) (Muro-Cruz et al., 2002; Panarelli et al., 2019), such values are below the intrinsic growth rates that other cladocerans like Moina sp. can reach (Sipaúba-Tavares & Bachion, 2002; Deng & Xie, 2003; Rodríguez-Estrada et al., 2003).

In relation to algal density, some cladoceran species are adapted to either low or high densities; for instance, C. rectangula and P. aduncus showed lower growth rates at increasing algal densities (Nandini & Sarma,2000; Muro-Cruz et al. 2002). Nevertheless, these authors tested a single algal species. In our study, A. guttata exhibited higher growth rates with increasing algal density, with N. oculata as a better food source over C. vulgaris.

The algal species has also significant effects on the reproduction and survival of A. guttata. In this study we observed that either C. vulgaris or N. oculata were good food source, which promoted a higher performance than the alga R. subcapitata.

In the literature, the genera Chlorella and Nannochloropsis have been described to synthesize high amounts of polyunsaturated fatty acids (PUFA) in comparison to other genera like Raphidocelis (Patil et al., 2007); therefore, feeding on these algae could serve as a better food source that provides the essential nutrients to enhance reproduction and survival (Schlotz et al., 2012).

Up to date, three publications have reported the survival and fertility of A. guttata. On the one side, Garza-León et al. (2017) and Osorio-Treviño et al. (2019) carried out partial life table analysis with similar algal densities (N. oculata at 2×106 cells/mL) and temperature (25°C) than the present study; an on the other side, Cortez-Silva et al. (2022) studied the life cycle but used R. subcapitata as food source and temperature within the interval here tested. In these studies, neither of them employed any substrate in the culture media, and despite A. guttata survived and produced offspring in those conditions, we found out that the inclusion of substrate improved the performance of these chydorids, increasing their rate of population growth and survival. It has been demonstrated that not all chydorids grow better on a diet composed solely of microalgae but rather on one of detritus or bacteria (Smirnov, 1962; Vijverberg & Boersma, 1997), although a mixed diet could be more important for chydorids nutrition (Lemke et al., 2007).

In conclusion, A. guttata can feed on either C. vulgaris or N. oculata, increasing their longevity and fertility when algal density is high (2×106 cells/mL). Temperature had significant effects on the life history of A. guttata, but is was the interaction with the algal density and algal species which produced more significant effects on the performance of A. guttata. The continuous production of offspring and long survival in A. guttata allowed intrinsic growth rates that are among the highest within the family Chydoridae, which might suggest this species to be cultured for further purposes like aquaculture (since some Alona species form part of fish diets) or ecotoxicological studies, which have already been reported in the literature.

ACKNOWLEDGMENTS

OCOT thanks CONACYT for the master’s degree scholarship and the UAA for their financial support as a postgraduate student. MAAC and RRM thank CONACYT and SNI for their financial support.

REFERENCES

Alvarado-Suárez, G.B. 2017. Efecto del alimento balanceado y planctónico en la sobrevivencia y el desarrollo de los primeros estadios de Poeciliopsis infans (Woolman, 1894). M.S. Thesis, Centro de Ciencias Agropecuarias. Universidad Autónoma de Aguascalientes. Mexico. 130p. [ Links ]

Bottrell, H.H. 1975. Generation time, length of life, instar duration and frequency of moulting, and their relationship to temperature in eight species of cladocera from the River Thames, reading. Oecologia 19(2):129-140. DOI:10.1007/BF00369097 [ Links ]

Castilho, M.C.A., M.J. Santos-Wisniewski, C.B. Abreu & T.C. Orlando. 2015. Life history and DNA barcode of Oxyurella longicaudis (Birgei, 1910) (Cladocera, Anomopoda, Chydoridae). Zoological Studies 54:20. DOI:10.1186/s40555-014-0104-5 [ Links ]

Cortez-Silva, E.E., V.F. Souza, G.S. Santos& E.M. Eskinazi-Sant’Anna. 2022. Egg production and life history of Alona guttata Sars, 1862 (Cladocera, Chydoridae): implications for colonization of temporary ponds. Brazilian Journal of Biology 82:e237351. DOI:10.1590/1519-6984.237351 [ Links ]

Deng, D. & P. Xie. 2003. Effect of Food and Temperature on the Growth and Development of Moina irrasa (Cladocera: Moinidae). Journal of Freshwater Ecology 18(4):503-513. DOI:10.1080/02705060.2003.9663991 [ Links ]

De Mendiburu, F. 2016. agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-4. Available online at: https://CRAN.R-project.org/package=agricolae. (Downloaded February 14, 2018) [ Links ]

Dole-Olivier, M.J., D.M.P. Galassi, P. Marmonier & M. Creuzé Des Châtelliers. 2000. The biology and ecology of lotic microcrustaceans. Freshwater Biology 44(1):63-91. DOI:10.1046/j.1365-2427.2000.00590.x [ Links ]

Garza-León, C.V., M.A. Arzate-Cárdenas & R. Rico-Martínez. 2017. Toxicity evaluation of cypermethrin, glyphosate, and malathion, on two indigenous zooplanktonic species. Environmental Science Pollution Research 24(22):1812318134. DOI:10.1007/s11356-017-9454-y [ Links ]

Hann, B.J. 1985. Influence of temperature on life-history characteristics of two sibling species of Eurycercus (Cladocera, Chydoridae). Canadian Journal of Zoology 63(4):891-898. DOI:10.1139/z85-133 [ Links ]

Keen, R.E. 1967. Laboratory population studies of two species of Chydoridae (Cladocera, Crustacea). M.S. Thesis, Michigan State University, East Lansing. United States of America. 34 p. [ Links ]

Krebs, C.J. 1985. Ecology: the experimental analysis of distribution and abundance. New York, Harper & Row. 694p. [ Links ]

Lemke, A.M. & A.C. Benke. 2004. Growth, reproduction, and production dynamics of a littoral microcrustacean, Eurycercus vernalis (Chydoridae), from a southeastern wetland, USA. Journal of the North American Benthological Society 23(4):806-823. DOI:10.1899/0887-3593(2004)023<0806:GRAPDO>2.0.CO;2 [ Links ]

Lemke, A.M., M.J. Lemke & A.C. Benke. 2007. Importance of detrital algae, bacteria, and organic matter to littoral microcrustacean growth and reproduction. Limnology and Oceanography 52(5):2164-2176. DOI:10.4319/lo.2007.52.5.2164 [ Links ]

Martínez-Jerónimo, F. & P. Gómez-Díaz. 2011. Reproductive biology and life cycle of Leydigia louisi mexicana (Anomopoda, Chydoridae), a rare species from freshwater littoral environments. Crustaceana 84(2):187-201. DOI:10.1163/001121610X551827 [ Links ]

Masclaux, H., A. Bec & G. Bourdier. 2012. Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource. Journal of Limnology 71(2):261-266. DOI:10.4081/jlimnol.2012.e28 [ Links ]

Muro-Cruz, G., S. Nandini & S.S.S. Sarma. 2002. Comparative life table demography and population growth of Alona rectangula and Macrothrix triserialis (Cladocera: Crustacea) in relation to algal (Chlorella vulgaris) food density. Journal of Freshwater Ecology 17(1):1-11. DOI:10.1080/02705060.2002.9663862 [ Links ]

Murugan, N. & S.V. Job. 1982. Laboratory studies on the life cycle Leydigia acanthocercoides Fisher (1854) (Cladocera: Chydoridae). Hydrobiologia 89(1):916. DOI:10.1007/BF00017533 [ Links ]

Nandini, S., C. Enríquez-García & S.S.S. Sarma. 2007. A laboratory study on the demography and competition of three species of littoral cladocerans from Lake Huetzalin, Xochimilco, Mexico. Aquatic Ecology 41(4):547-556. DOI:10.1007/s10452-007-9116-0 [ Links ]

Nandini, S. & S.S.S. Sarma. 2000. Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia 435:117126. DOI:10.1023/A:1004021124098 [ Links ]

Nichols, H.W. 1973. Growth media-freshwater. In: Stein, J.R. (ed.). Handbook of Phycological Methods. Culture Methods and growth measurements. Cambridge University Press, pp. 7-24. [ Links ]

Nunn, A.D., L.H. Tewson & I.G. Cowx. 2012. The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries 22:377-408. DOI:10.1007/s11160-011-9240-8 [ Links ]

Osorio-Treviño, O. C., M.A. Arzate-Cárdenas & R. Rico-Martínez. 2019. Energy budget in Alona guttata (Chydoridae: Aloninae) and toxicant-induced alterations. Journal of Environmental Science and Health Part A 54(5):398-407. DOI:10.1080/10934529.2018.1558901 [ Links ]

Panarelli, E.A., H.A.O. Kawamura, L.M.A. Elmoor-Loureiro, F.D.R. Sousa, P.H.C. Corgosinho, D. Previattelli & C.E.F. Rocha. 2019. Life history of Karualona muelleri (Richard, 1897) (Chydoridae, Aloninae). Journal of Limnology 78(3). DOI:10.4081/jlimnol.2019.1848 [ Links ]

Patil, C.V., T. Källqvist, E. Olsen, G. Vogt & H.R. Gislerød. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International 15(1):1-9. DOI:10.1007/s10499-006-9060-3 [ Links ]

Pianka, E.R. 1978. Evolutionary Ecology. Harper & Row, New York. 356p. [ Links ]

Robertson, A. L. 1988. Life histories of some species of Chydoridae (Cladocera: Crustacea). Freshwater Biology 20(1):75-84. DOI:10.1111/j.1365-2427.1988.tb01719.x [ Links ]

Rodríguez-Estrada, J., R. Villaseñor-Córdova & F. Martínez-Jerónimo. 2003. Efecto de la temperatura y tipo de alimento en el cultivo de Moina micrura (Kurz, 1874) (Anomopoda: Moinidae) en condiciones de laboratorio. Hidrobiológica 13(3):239-245. [ Links ]

Santos-Wisniewski, M.J., O. Rocha & T. Matsumura-Tundisi. 2006. Aspects of the life cycle of Chydorus pubescens Sars, 1901 (Cladocera, Chydoridae). Acta Limnologica Brasiliensia 18(3):305-310. DOI:10.1590/S0073-47212013000200005 [ Links ]

Schlotz, N., J.G. Sørensen & D. Martin-Creuzburg. 2012. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: a gene expression approach. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 162(4):449-454. DOI:10.1016/j.cbpa.2012.05.004 [ Links ]

Sharma, S. & B.K. Sharma. 1998. Observations on the longevity, instar durations, fecundity and growth in Alonella excisa (Fisher) (Cladocera, Chydoridae). The Indian Journal of Animal Science 68:101-104. [ Links ]

Silva, E.D.S., C.B. Abreu, T.C. Orlando, C. Wisniewski & M.J.D. Santos-Wisniewski. 2014. Alona iheringula Sinev and Kotov, 2004 (Crustacea, Anomopoda, Chydoridae, Aloninae): Life Cycle and DNA Barcode with Implications for the Taxonomy of the Aloninae Subfamily. PLoS ONE 9:e97050. DOI:10.1371/journal.pone.0097050 [ Links ]

Sinev, A.Y. & M. Silva-Briano. 2012. Cladocerans of genus Alona Baird, 1843 (Cladocera: Anomopoda: Chydoridae) and related genera from Aguascalientes State, Mexico. Zootaxa 3569:1-24. DOI:10.11646/zootaxa.3693.3.3 [ Links ]

Sipaúba-Tavares, L.H. & M.A. Bachion. 2002. Population growth and development of two species of cladócera, Moina micrura y Diaphanosoma birgei, in laboratory. Brazilian Journal of Biology 62(4A):701-711. DOI:10.1590/s1519-69842002000400018 [ Links ]

Smirnov, N. 1962. Eurycercus lamellatus (O. F. Müller) (Chydoridae, Cladocera): Field observations and nutrition. Hydrobiologia 20(3):280-294. DOI:10.1007/BF00046194 [ Links ]

Sousa, F., L. Elmoor-Loureiro, A. Quadra & A. Senna. 2014. First record of Cladocera (Crustacea: Chydoridae) from Parque Nacional do Itatiaia, Southeastern Brazil. Check List 10(3):665-668. DOI:10.15560/10.3.665 [ Links ]

USEPA. 2002. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA-821-R-02-012. U.S.A. Environmental Protection Agency, Washington D.C., U.S.A. 275p. Also available at: https://www.epa.gov/sites/production/files/2015-08/documents/acute-freshwater-and-marine-wet-manual_2002.pdfLinks ]

Venkataraman, K. 1990. Life-history studies on some cladoceran under laboratory conditions. Journal and Science Association 6:127-132. [ Links ]

Vijverberg, J. & M. Boersma. 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360(1-3):233-242. DOI:10.1023/A:1003148600983 [ Links ]

Viti, T., C. Wisniewski, T.C. Orlando & M.J. Santos-Wisniewski. 2013. Life history, biomass and production of Coronatella rectangula (Branchiopoda, Anomopoda, Chydoridae) from Minas Gerais. Iheringia. Série Zoologia 103(2):110-117. DOI:10.1590/S0073-47212013000200005 [ Links ]

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York. Available online at: https://ggplot2.tidyverse.org (downloaded February 15, 2018). [ Links ]

Received: October 05, 2021; Accepted: July 18, 2022

*Corresponding author: Mario Alberto Arzate-Cárdenas: e-mail: marzate@conacyt.mx; marzatc@gmail.com

To quote as: Osorio-Treviño, O. C., M. A. Arzate-Cárdenas & R. Rico-Martínez. 2022. Effect of diet and temperature on the culture of Alona guttata (Sars, 1862) (Cladocera: Chydoridae) under laboratory conditions. Hidrobiológica 32 (2): 81-91.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License