SciELO - Scientific Electronic Library Online

 
vol.22 número1Anatomía del corazón y las arterias branquiales aferentes de las rayas (Chondrichthyes: Batoidea)Estudios sobre el manejo e incubación de huevos del pargo flamenco Lutjanus guttatus (Pisces, Lutjanidae) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Hidrobiológica

versión impresa ISSN 0188-8897

Hidrobiológica vol.22 no.1 Ciudad de México ene./abr. 2012

 

Artículos

 

Juvenile yield index to highlight intensive culture potential in tropical marine fish

 

Índice de rendimiento de juveniles para resaltar la potencialidad para el cultivo intensivo de peces marinos tropicales

 

Luis Álvarez–Lajonchère1 and Leonardo Ibarra–Castro2

 

1 Grupo Piscimar, Calle 41 No. 886, Nuevo Vedado, Plaza, La Habana, 10600. Cuba. E–mail: alajonchere@gmail.com

2 Centro de Investigación en Alimentación y Desarrollo, Reproducción y Cultivo Larvario de Peces Marinos. Unidad Mazatlán. Ave. Sábalo Cerritos S/N, Mazatlán, Sinaloa. 82010. México.

 

Recibido: 15 de abril de 2011.
Aceptado: 6 de octubre de 2011.

 

ABSTRACT

Juvenile seedstock availability and costs are some of the main biological aspects to be considered on species for intensive culture assessment studies, together with market importance and performance under culture conditions, especially the growth rate and yields. A juvenile yield index (JYi) is described, as one of the judgment indicator of juvenile efficiency utilization on edible size culture production of tropical marine fishes. This index is expressed asthe number of juveniles required per metric ton per year, and combines fish growth rate during grow–out, survival, and commercial size at harvest. The JYi could be combined with production costs and wholesale prices, to estimate a juvenile gross profit index (JGPi), and expressed in terms of estimated gross profit per juvenile number required per ton produced per year.

Key words: Tropical marine fishes, juveniles, juvenile yield index, intensive culture potential.

 

RESUMEN

La disponibilidad y costos de los organismos juveniles que serán criados están entre los principales aspectos biológicos a considerar en los estudios de evaluación de especies para el cultivo intensivo, además de la importancia comercial y el comportamiento de los organismos bajo condiciones de cultivo, especialmente la tasa de crecimiento y los rendimientos. Se describe un índice de rendimiento de juveniles (IRJ) como uno de los indicadores para evaluar la eficiencia en la utilización de juveniles en la producción del cultivo de peces marinos tropicales de talla comestible. Este índice está expresado como el número de juveniles requerido para cada tonelada métrica por año y combina la tasa de crecimiento durante la engorda, la supervivencia y la talla comercial a la cosecha. Es posible combinar el IRJ de rendimiento de juveniles con los costos de producción y los precios mayoristas, para estimar un índice de ganancias brutas de juveniles y expresar en términos de ganancia bruta el número de juveniles requerido por tonelada producida al año.

Palabras clave: Peces marinos tropicales, juveniles, índice de rendimiento de juveniles, potencialidad para el cultivo intensivo.

 

INTRODUCTION

There is a continuous search for new species to culture for national and international markets Leunq et al., 2007; Cross et al., 2008). Marine fish species that have been investigated for intensive culture overthe lastdecadesare mostly carnivorous species with a high market value (Beveridge & Haylor, 1998), based on several important criteria to assess culture potentialities. Among the important criteria to be considered in species selection procedures are juvenile availability and production costs, as well as efficiency performance, especially on mean absolute growth, survival and yield, under culture systems and various conditions. Final harvest size is also important to address in relation to processing industry requirements for high value–added benefit (Suquet et al., 2002; Ottolenghi et al., 2004). These parameters, which determine production and economic efficiency, usually decide the success of a farming operation.

Availability of wild juveniles, with rare exceptions, has been low, variable and costly (Álvarez–Lajonchère & Taylor, 2003), while technologies fortheir controlled mass production can often be difficult and has been slow to develop, requiring up to 10 years (Muir & Young, 1998) or even more in developing countries (Álvarez–Lajonchère, 2005).

Production of required quantities of high quality finfish juveniles at the right time and at reasonable cost is the main goal that marine fish culture hasto achieve before commercialfish cultivation can be sustainable (Álvarez–Lajonchère et al., 2007). At the same time, operational costs for intensive tropical marine fish juvenile production and cultivation are very high, and their nursery and grow–out phases are subject to a range of environmental and market–based risks (Jones, 1972; Weber & Riordan, 1975; Le François et al., 2002; Álvarez–Lajonchère & Taylor, 2003; Leung et al., 2007). Thus, it is important to assure efficacy in all aspects and phases of the rearing process from juveniles to harvest.

In Latin America, marine fish culture research started more than 40 years ago, but there are only a few pilot–scale and commercial under operation. Thus, it is important that new projects become operational on a short term, and candidate species to be selected must have culture technologies already developed, which have been and are being commercially cultured with profit (Benetti et al. 1998). Although most of these aspects will depend on farmer involvement and technology development levels, these can be reduced by choosing data of aged production trail reports.

The object of the present study was to combine some of the assessment criteria in a new juvenile efficiency utilization index, which could highlight culture potential of tropical marine fishes as one of the judgment indicators of species culture potential as part of assessment, evaluation and selection processes for Latin America, especially during a pre–selection stage.

 

MATERIAL AND METHODS

A juvenile yield index (JYi) was conceived to assist intensive culture assessments of marine fish, combining several of the important criteria, as growth rate and mortality during the whole rearing cycle to commercial size. JYi considers the number of juveniles required to be stocked and reared up to marketable size for a mean standard production of one metric ton per year.

JYi considers the species growth rate and the estimated mean survival, calculated from the following equation:

X–MX= 1000/AGR (a/b)

X(1 –M) = 1000/AGR (a/b)

where: X= number of juveniles.

M = mean estimated mortality (%).

AGR= absolute growth rate during nursery and grow–out to commercial size (g/day).

a = factor for converting days to years (365)

b= factor for converting g to kg (1000)

The evaluation of JYi was carried out calculating the index for three data sets (Table 1) on best consistent maximum absolute growth rate (AGR) and the estimated mortality during nursery and grow–out trials to commercial size of: a) results obtained on experimental scale trials; b) results on pilot–scale trials; c) reports on commercial scale operations. The species location were specified on Table 1, those from tropical marine fishes present in Latin American and the Caribbean waters with culture performance reports considered among the best observed of each species taken from medium or long–term culture activities, those from species which are or have been intensively cultured at experimental scale in Latin America and the Caribbean region (Gómez Gaspar & Cervigón, 1987; Thouard et al., 1990; Tucker & Jory, 1991; FAO, 1994; Benetti et al., 1998; Gómez, 2002), and those from some traditional established species cultured on similar latitude and temperature range in other regions. Data were taken from the literature, referred by experts or directly obtained by the authors, following considerations described by Binohlan and Froese (2009) from FishBase (http://www.fishbase.org/search.php).

 

RESULTS

The information on AGR obtained about tropical marine fishes with commercial importance present along Latin American coasts and some traditional established species in othertropical or subtropical regions was prepared to calculate the relationships between these parameters (Table 1). The calculated JYi (Fig. 1) showed great differences between species, from less than about 1000 juveniles required for production of every metric ton per year to about 5000 among the species considered. A few species with a juvenile yield index of about 1000 or less are those with the highest performance: cobia Rachycentron canadum (Linné, 1766), Goldstriped amberjack Seriola lalandi Valenciennes, 1833, Great amberjack Serióla dumerili (Risso, 1810), Almaco jack Serióla rivoliana Cuvier, 1833, and red drum Sciaenops ocellatus (Linné, 1766). Another group of species with JYi between 1000 and 2000 and a moderate and acceptable culture performance are: mullet snapper Lutjanus aratus (Giinther, 1864), Nassau grouper Epinephelus striatus (Bloch, 1792), permit Trachinotus falcatus (Linné, 1758), Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922), Florida pompano Trachinotus carolinus (Linné, 1766), common snook Centropomus undecimalis (Bloch, 1792), John's snapper Lutjanus johnii (Bloch, 1792), palometa Trachinotus goodei Jordan & Evermann, 1896. The rest of the analyzed species had JYi higher than 2000, which can be taken as an indication of fairto poor culture performance.

 

DISCUSSION

There are very few commercial projects on marine fish culture in Latin American in spite of research efforts carried out during more than 40 years. Thus, to reach commercial scale in a short term, it is considered that best species to be selected for cultivation in a region should be those on which culture technologies are already developed and have been and are being cultured commercially ata profit (Benetti et al., 1998). The selection process of such species could be assisted in part by the application, as one of several criteria on a pre–selection stage, by JYi.

Also, results from the application of the JYi would be strongly influence y by farmers culture efficiencies, which are dependent on several important culture aspects as site environment parameter ranges and theirfluctuations during the rearing term, culture system and intensities applied, feeds and feeding techniques, possible diseases suffered, the knowledge and experience on each species, as well as the technology development levels and farmers expertise. These variabilities could be reduced by choosing data of medium to long term production reports, especially those on pilot or commercial scales.

As farming is a business, profitability is essential, and forfish culture capital and operation costs can be high (Ottolenghi et al., 2004; O'Bryen & Lee, 2007). Other important criteria to be considered are the development degree of culture technology, availability of juvenile and culture performance, as good growth, survival and food utilization, according to site and culture systems among the most important (Jones, 1972; Weber & Riordan, 1975; Pillay, 1993; Benetti et al., 1998; O'Bryen & Lee, 2007).

Availability of juveniles and their efficient utilization is very important for successful commercial ventures and are one of the important indicators considered on assessment of culture potential studies, Atthe same time, adequate culture performance, like short rearing cycles as a result of good growth rates, are important forfast cash flows as well as reduced operational costs and possible risks for various kinds of damages, such as weather impacts, pollution, diseases, accidents, and market variations (Jones, 1972; Weber & Riordan, 1975; Álvarez–Lajonchère & Taylor, 2003).

The yield index for the number of juveniles required to produce a ton per year integrates several important biological performance features that affect rearing efficiency and technology development of the species from nursery to grow–out up to commercial size, such as growth rate, survival, and size attained at harvest. This yield index could be analyzed as part of a preliminary pre–selection stage of culture potentialities, before a full evaluation is carried out.

Juvenile cost of gilthead seabream 5parus aurafa Linné, 1758 was calculated to be 3.3 juveniles to produce 1 kg of commercial size fish by Sweetman (2001), but not adjusted to one–year time. In the present study, the effect of time to reach commercial size was also included in the JYi that is presented as an additional tool for species culture potential assessment studies, allowing for growth rate influence. Another feature that influences the JYi of the present study is harvest size, which has been highlighted by Weber and Riordan (1975), Suquet et al. (2000) and Quéméner et al. (2002) in relationto processing possibilities as value–added products, an important criterion to consider (Ottolengthi et al, 2004). Species with small harvest size are low scored for the processing industry, for which best sizes are 0.5–1 m and more than 1 kg (Suquet et al, 2002).

The JYi could also be combined with total operational costs (including juvenile costs) perunitton per year, and market wholesale prices, to calculate the profit per stocked juvenile for every ton produced per year. For some established species with JYi of 500 or less, like and established species present outstanding values, several time higher than species with poor culture performances.

 

ACKNOWLEDGEMENTS

The authors wish to thank the numerous colleagues who kindly sent published reports and important unpublished information, to be able to carry out significantly better assessment with important species present in Latin America, which should have been included in such a study due to their biological characteristics. We wish to express our gratitude to many colleagues and researchers for the information sent as well as their helpful comments and recommendations of earlier versions of the manuscript. Authors also thank to the anonymous reviewers whose comments improved the manuscript.

 

REFERENCES

Álvarez–Lajonchère, L., M. A. Reina Cañez, M. A. Camacho Hernández & S. Kraul. 2007. Design of a pilot–scale tropical marine finfish hatchery for a research center at Mazatlán, Mexico. Aquacultural Engineering 36:81–96.         [ Links ]

Álvarez–Lajonchère, L. & R. G. Taylor. 2003. Economies of scale for juvenile production of common snook (Centropomus undecimalis Bloch). Aquaculture Economics and Management 7: 273–292.         [ Links ]

Álvarez–Lajonchère, L. 2005. Las tecnologías de producción en acuicultura y su transferencia: el caso de las de producción de juveniles. AcuaCuba 7: 12–26.         [ Links ]

Avilés Quevedo, A. & F. Castelló Orsay. 2004. Manual para el cultivo de Seriola lalandi (Pisces: Carangidae) en Baja California Sur, México. Instituto Nacional de la Pesca, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México. 47 p.         [ Links ]

Avilés–Quevedo, A. & F. Castelló–Orvay. 2003. Avances en el cultivo experimental de pargos (Pisces: Lutjanidae) en Bahía de la Paz, México. In: III Simposio Nacional de Acuacultura y Pesca, noviembre 2003, Antigua, Guatemala.         [ Links ]

Avilés–Quevedo, A., U. McGregor Pardo, R. Rodríguez Ramos, O. Hirales Cosío, M. Huerta Bello & M. Iizawa. 1995. Biología y cultivo de la cabrilla arenera Paralabrax maculatofasciatus(Steindachner, 1868). Instituto Nacional de la Pesca and Agency of International Cooperation of Japan, La Paz, México. 85 p.         [ Links ]

Benetti, D. D., A. M. Clark & M. W. Feeley. 1998. Feasibility of selected candidate species of marine fish for cage aquaculture development in the Gulf of Mexico with novel remote sensing techniques for improved offshore systems monitoring. In: Stickney, R. R. (Ed.). Joining Forces with Industry. Proceedings of the Third International Conference on Open Ocean Aquaculture, Corpus Christi, Texas (EE. UU.), May 10–15,1998. Texas, Sea Grant College Program Publication Texas A and M University, pp. 103–119.         [ Links ]

Benetti, D. D., J. A. Matera, O. M. Stevens, J. F. Alarcón, M. W. Feeley, F. J. Rotman, Y. Minemoto, G. Banner–Stevens, J. Franke, S. Zimmerman & L. Eldridge. 2002. Growth, survival and feed conversion rates of hatchery–reared mutton snapper Lutjanus analis cultured in floating net cages. Journal of the World Aquaculture Society 33:349–357.         [ Links ]

Beveridge, M. C. M. & G. S. Haylor. 1998. Warm–water farmed species. In: K. D. Black, K. D. &A. D. Pickering (Eds.). Biology of farmed fish. Sheffield, Sheffield Academic Press, pp. 1–26.         [ Links ]

Binohlan, C. & R. Froese. 2009. Empirical equations for estimating maximum length from length at first maturity. Journal of Applied Ichthyology25: 611–613.         [ Links ]

Cardona–Pascual, L. 1993. Otras especies de peces con interés en acuicultura. In. F. Castelló–Orvay (Ed.). Acuicultura marina: Fundamentos biológicos y tecnología de la producción. Universitat de Barcelona, Barcelona, pp. 467–476.         [ Links ]

Cerqueira, V. R. 2005. Cultivo do robalo–peva (Centropomus parallelus). In: B. Baldisseroto & L. Gomes (Eds.). Espécies nativas para piscicultura no Brasil. Universidade Federal de Santa Maria, Santa Maria, Brasil, pp. 403–431.         [ Links ]

Cross, T. F., G. Burnell, J. Coughlan, S. Culloty, E. Dillane, P. McGinnity & E. Rogan. 2008. Detrimental genetic effects of interactions between reared strains and wild populations of marine and anadromous fish and invertebrate species. In: Holmer, M., K. Black, CM. Duarte, N. Marbá & I. Karakassis (Eds.). Aquaculture in the Ecosystem. Springer Science, pp. 117–154.         [ Links ]

Doi, M. & T. Singhagraiwan. 1993. Biology and culture of the red snapper, Lutjanus argentimaculatus. The Eastern Marine Fisheries Development Center and International Cooperation Agency of Japan. 51 p.         [ Links ]

Food and Agriculture Organization of the United Nations (FAO). 1994. Report to the government of Jamaica on an evaluation of the possibilities for marine cage fish–culture and other alternative technologies. Based on the work of P. Espeut, Y. Harache, G. Lemarie y J. M. Ricard. TCP/JAM/2251 Field Docum. No 1. www.fao.org/docrep/field/003/V3469E/V3469E00.htm.         [ Links ]

France Aquaculture. 1985. Estudio de potencialidad en material de acuicultura. Estado de Baja California Sur. México. France Aquaculture, Paris, France.         [ Links ]

Gómez Gaspar, A. & F. Cervigón. 1987. Perspectivas del cultivo de peces marinos en el Caribe Sur y Nordeste de Sudamerica. Revista Latinoamericana de Acuicultura 34:40–50.         [ Links ]

Gómez, A. & F. Larez. 1984. Crecimiento de la paguara Chaetodiperus faber (Pisces: Ephippidae) durante un año de confinamiento en jaula flotante. Boletín del Instituto Oceanográfico, Venezuela, Universidad de Oriente 23:157–161.         [ Links ]

Gómez, A. 2002. Selección de peces marinos para cultivos intensivos en el nororiente de Venezuela. Boletín de Investigaciones Marinas y Costeras 31: 53–63.         [ Links ]

Goyard, E. & J.C. Falguiére. 1997. Red fish program: an example of co–ordination between research, development institutions and production in Martinique (French West Indies). Aquaculture Europe 21(3): 6–10.         [ Links ]

Jones, A. 1972. An examination of the factors to be considered in the choice of species. Fisheries Laboratory Lowestoft, Laboratory Leaflet 24:1–15.         [ Links ]

Kissil, G. A., A. Tandler, A. Elitzur, A. Colorni & Y. Zohar. 2000. Gilthead seabream, Sparus aurata. In: R.R. Stickney (Ed.). Encyclopedia of Aquaculture. John Wiley and Sons, New York, pp. 409–416.         [ Links ]

Laidley, C. W., R. J. Shields, A. Molnar, M. Kaiwa, J. Aipa, J. Kobashigawa & L. Tang. 2004. Intensive culture of the red snapper Lutjanus campechanus. In: WAS Aquaculture 2004 Meeting Abstracts, http://www.was.org/.         [ Links ]

Le François, N. R., H. Lemieux & P.U. Blier. 2002. Biological and technical evaluation of the potential of marine and anadromous fish species for cold–water mariculture. Aquaculture Research33:95–108.         [ Links ]

León R., J., J. Millán Q. & L. León S. 1996. Cultivo experimental del pargo dentón (Lutjanus griseus) en estanques. Boletín del Instituto Oceanográfico, Universidad de Oriente 35:9–15.         [ Links ]

Leung, P. S., C. S. Lee & P. J. O'Bryen. 2007. Introduction. In: Leung, P. S., C.–S. Lee & P. J. O'Bryen (Eds.). Species and systems selection for sustainable aquaculture. Oceanic Institute, Hawaii, pp. 1–5.         [ Links ]

McMaster, M. F., T. C. Kloth & J. F. Cofjurn. 2003. Prospects for commercial pompano mariculture. In. Aquaculture America 2003. Available at http://216.25.82.220/AquacultureAmerica03.pdf.         [ Links ]

Moe, M. A., R. H. Lewis & R. M. Ingle. 1968. Pompano mariculture: preliminary data and basic considerations. Florida Board of Conservation Marine Laboratory, Technical Series 55:1–65.         [ Links ]

Muir, J. F. & A. Young. 1998. Strategic issues in new species development for aquaculture. In: Enne, G. & G. F. Greppi (Eds.). New species for Mediterranean aquaculture, Proceedings of 33rd International Symposium on New Species for Mediterranean Aquaculture. Elsevier, pp. 22–24.         [ Links ]

Muraccioli, P., F. de la Gándara & A. García–Gómez. 2002. Intensive farming potential of Seriola dumerili (Risso 1810) in Corsica. In: Paquotte P., C. Mariojouls & J. Young (Eds.). Seafood market studies for the introduction of new aquaculture products. Seminar of the CIHEAM (Cahiers Options Méditerranéennes) Network on Socio–Economic and Legal Aspects of Aquaculture in the Mediterranean, 2001/06/21–22, Zaragoza, pp. 267–273.         [ Links ]

O'Bryen, P. J. & C. S. Lee. 2007. Discussion summary: socioeconomic aspects of species and systems selection for sustainable aquaculture. In: Leung, P. S., C.–S. Lee & P. J. O'Bryen (Eds.). Species and systems selection for sustainable aquaculture. Oceanic Institute, Hawaii, pp. 477–487.         [ Links ]

Ottolenghi, F., C. Silvestri, P. Giordano, A. Lovatelli & M. B. New. 2004. Capture–based aquaculture. The fattening of eels, groupers, tunas and yellowtails. FAO, Rome, Italy. 308 p.         [ Links ]

Pillay, T. V. R. 1993. Aquaculture principles and practices. Fishing News Books, Oxford, 575 p.         [ Links ]

Quéméner, L, M. Suquet, D. Mero & J. L. Gaignon. 2002. Selection method of new candidates for finfish aquaculture: the case of the French Atlantic, the Channel and the North Sea coasts. Aquatic Living Resources 15:293–302.         [ Links ]

Sánchez, A., C. Rosas Vázquez, C. V. Durruty Lagunes & J. Suárez Bautista. 2002. Reproducción en cautiverio de robalo. Una necesidad inaplazable en el sureste mexicano. Panorama Acuícola Magazine 7: 24–25.         [ Links ]

Soletchnik, P., E. Thouard, D. Gallet de Saint–Aurin, M. Suquet, P. Hurtaud & J. P. Mesdouze. 1988. Overview of the studies conducted on the finfish palometa (Trachinotus goodei) in Martinique (French West Indies). Document Scientifique, Pôle de Recherche.Oceanologique etHalieutique Caraïbe 18:1–18.         [ Links ]

Suquet, M., D. Parfouru, P. Paquotte, S. Girard & J. L. Gaignon. 2000. Method for selection of new marine fish species: the case of Pollack (Pollachius pollachius). Ciheam Options Méditerraneennes 47. 127–134.         [ Links ]

Suquet, M., P. Divanach, L. Quemener & J. L. Gaignon. 2002. Criteria for cost–effective diversification for European finfish mariculture. In: Paquotte, P., C. Mariojouls & J. Young (Eds.). Seafood market studies for the introduction of new aquaculture products. Seminar of the CIHEAM (Cahiers Options Méditerranéennes) Network on Socio–Economic and Legal Aspects of Aquaculture in the Mediterranean, 2001/06/21–22, Zaragoza, pp. 119–128.         [ Links ]

Sweetman, J. 2001. Optimization of finfish hatchery production costs. In: Larview, Ghent, Belgium, September 6–7,2001. http://www.inv.com/larview.         [ Links ]

Thouard, E., P. Soletchnik & J. P. Marion. 1990. Selection of finfish species for aquaculture development in Martinique (F.W.I.). Aquaculture 89: 193–197.         [ Links ]

Tucker, J. W., Jr. 1987. Snook and tarpoon culture and preliminary evaluation for commercial farming. Progressive Fish Culturist49:49–57.         [ Links ]

Tucker, J. W., Jr. 1999. Grouper aquaculture. Southern Regional Aquaculture Center Publication 721:1–11.         [ Links ]

Tucker, J. W., Jr., &D. E. Jory. 1991. Marine fish culture in the Caribbean region. World Aquaculture 22 (1): 10–14,16–17,19–27.         [ Links ]

Turano, M. J., D. A. Davis & C. R. Arnold. 2000. Observations and techniques for maturation, spawning, and larval rearing of the yellowtail snapper Ocyurus chrysurus. Journal of the World Aquaculture Society31: 59–68.         [ Links ]

Watanabe, W. O.2001. Muttom snapper. Southern Regional Aquaculture Centre Publication 725:1–11.         [ Links ]

Weber, H. H. & P. F. Riordan. 1975. Criteria for candidate species for aquaculture. Proceedings of the World Mariculture Society 6:389–406.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons