SciELO - Scientific Electronic Library Online

 
vol.22 número4EXPERIMENTAL STUDY OF OZONE-FORMING POTENTIAL FROM EXHAUST EMISSIONS OF VEHICLES FUELED WITH REFORMULATED GASOLINE IN MÉXICO CITY índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista internacional de contaminación ambiental

versión impresa ISSN 0188-4999

Rev. Int. Contam. Ambient vol.22 no.4 Ciudad de México oct./dic. 2006

 

Artículos de revisión

VANADIO: CONTAMINACIÓN, METABOLISMO Y GENOTOXICIDAD

Juan José Rodríguez-Mercado1 

Mario Agustín Altamirano-Lozano1 

1Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Bioterio Campo-II, Facultad de Estudios Superiores-Zaragoza, UNAM. A.P. 9-020, D.F. 15000 México. Tel.: +52-5623-0706. Correos electrónicos: juserom@correo.unam.mx, maal@servidor.unam.mx


RESUMEN

El vanadio (V) es un metal ampliamente distribuido tanto en la naturaleza como en los sistemas biológicos y es uno de los elementos traza presente en los combustibles de tipo fósil. Por esta razón, la combustión de estos materiales es la fuente más importante de vanadio en el ambiente. En la tabla periódica es el primer elemento de la serie de transición y puede formar compuestos generalmente con valencias III, IV y V. El vanadio, como vanadato, se encuentra principalmente en los fluidos corporales extracelulares, mientras que en el ambiente intracelular el estado de oxidación IV es el más común. Los trabajos sobre el papel biológico del vanadio han ganado mucha importancia en los últimos años debidos a su bien conocido potencial tóxico, mutagénico y genotóxico en una amplia variedad de sistemas biológicos, además de que recientemente el pentóxido de vanadio ha sido clasificado por la IARC (2006) como un posible carcinógeno para los humanos. La información sobre el efecto clastogénico de los compuestos de vanadio es muy poca y controversial, mientras que los datos sobre su potencial mutagénico y genotóxico en sistemas bacterianos, en levaduras y en plantas son poco concluyentes. Por otro lado, los resultados obtenidos con células de mamífero, tanto in vitro como in vivo indican que los compuestos de vanadio tienen efectos mutagénicos y genotóxicos, aunque la acción más evidente de estos compuestos es la alteración de la función de los microtúbulos y consistentes efectos citotóxico y citostáticos. Por tales razones algunos autores, incluyéndonos, hemos considerado al vanadio como un mutágeno débil.

Palabras clave: toxicidad de los metales; efectos mutagénicos; efectos genotóxicos; toxicidad celular; vanadio

ABSTRACT

Vanadium is a transition metal widely distributed in the environment and in biological systems, and it is a major trace element in fossil fuels. Consequently, combustion of these materials is a significant source of vanadium in the environment. In the periodical table, vanadium belongs to the first transition series and can form compounds mainly in valences III, IV and V. The V state of vanadium, as vanadate, predominates in extracellular body fluids whereas the IV form is the most common intracellular form. Research on biological influence of vanadium has gained major importance because it is well known that is exerts potent toxic, mutagenic, and genotoxic effects on a wide variety of biological systems, including that recently compounds as the vanadium pentoxide, has been classified by the IARC (2006) as a possible carcinogenic agent for humans. Information about the clastogenic effects of vanadium compounds is limited and controversial, and data about its mutagenic and genotoxic potential in bacterial, yeast and plants are inconclusive. On the other hand, results obtained in mammalian cells, both in vivo and in vitro, indicate that vanadium compounds produce mutagenic and genotoxic responses, however, the most evident action exhibited by this metal compounds is their ability to disrupt microtubule function, and consistent cytotoxic and cytostatic effects. By these reasons some authors, including us, classify vanadium as a weak mutagen.

Keywords: metals toxicity; mutagenic effects; genotoxic effects; cell toxicity; vanadium

Texto completo disponible sólo en PDF.

REFERENCIAS

Abundis, M.H.M. (1994). Valoración de la genotoxicidad del pentóxido de vanadio en células de las alas de Drosophila melanogaster. Comparación de tres protocolos. Tesis de Licenciatura. UNAM, México. [ Links ]

Abundis, M.H.M. (1996). Determinación de la mutación y recombinación somáticas en la inducción de efectos genotóxicos por tres sales de vanadio en Drosophila melanogaster. Tesis de Maestría. UNAM, México. [ Links ]

Alessio, L.; Marinoni, M. y DeU'Orto, A. (1988). Biological monitoring of vanadium. En: Biological monitoring of toxic metals. (W.T., Clarkson; L., Friberg; F., Nordberg y R., Sanger, Eds.) Plenum Press, Nueva York, pp. 427-436. [ Links ]

Altamirano, L.M.; Álvarez, B.L. y Roldán, E.R. (1993). Cytogenetic and teratogenic effects of vanadium pentoxide on mice. Med. Sci. Res. 21, 711-713. [ Links ]

Altamirano-Lozano, M.A. y Álvarez-Barrera, L. (1996). Genotoxic and reprotoxic effects of vanadium and lithium. En: Metal Ions in Biology and Medicine (J., Collery; Ph., Corbella; J.L., Domingo; J.C., Etienne y J.M., Llobert, Eds.). John Libbey Eurotex, París, Vol. 4, pp. 423-425. [ Links ]

Altamirano-Lozano, M.A.; Álvarez-Barrera, L.; Basurto-Alcántara, F.; Valverde, M. y Rojas, E. (1996). Reprotoxic and genotoxic studies of vanadium pentoxide in male mice. Teratogen. Carcinogen. Mutagen. 16, 7-17. [ Links ]

Altamirano-Lozano, M.; Valverde, M.; Álvarez-Barrera, L.; Molina, B. y Rojas, E. (1999). Genotoxic studies of vanadium pentoxide (V2O5) in male mice. II. Effects in several mouse tissues. Teratogen. Mutagen. Carcinogen. 19, 243-255. [ Links ]

Alessio, L.; Marinoni, M. y Dell'Orto, A. (1988). Biological monitoring of vanadium. En: Biological monitoring of toxic metals (W.T., Clarkson; L., Friberg; F., Nordberg y R., Sanger, Eds.). Plenum Press, Nueva York . pp. 427-436. [ Links ]

Andrew, A.S.; Warren, A.J.; Barchowsky, A.; Temple, K.A.; Klei, L.; Soucy, N.V.; O'Hara, K.A. y Hamilton, J.W. (2003). Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Perspect. 111, 825-835. [ Links ]

Aragón, M.A.; Ayala, M.E.; Fortoul, T.I.; Bizarro, P. y Altamirano-Lozano, M. (2005). Vanadium induced ultrastructural changes and apoptosis in male germ cells. Reprod. Toxicol. 20, 127-134. [ Links ]

Attia, S.M.; Badary, O.A.; Hamada, F.M.; Hrabé de Angelis, M. y Adler, I.D. (2005). Orthovanadate inceased the frequency of aneuploid mouse sperm without micronucleus induction in mouse bone marrow erythrocytes at the same dose level. Mutat. Res. 583, 158-167. [ Links ]

Bal, W. y Kasprzak, K.S. (2002). Induction of oxidative DNA damage by carcinogenic metals. Toxicol. Lett. 127, 55-62. [ Links ]

Baran, E.J. (2000). Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems. J. Inorg. Biochem. 80, 1-10. [ Links ]

Baroch, E.F. (1983). Vanadium and vanadium alloys. En: Encyclopaedia of chemical technology. Wiley, Nueva York, pp. 673-710. [ Links ]

Barrera, F.S.M. y Villalobos, C.H.D. (1998). Genotoxic effects of vanadyl sulfate in Drosophila melanogaster. Invest. Clin. 39, Suppl. 1, 123-37. [ Links ]

Bjelland, S. y Seeberg, E. (2003). Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat. Res. 531, 37-80. [ Links ]

Bronzetti, G.; Morchetti, E.; Della Croce, E.; del Carratore, R.; Giromini, L. y Galli, A. (1990). Vanadium; genetical and biochemical investigations. Mutagenesis 5, 293-295. [ Links ]

Budavari, S.; O'Neil, M.J.; Smith, A.; Heckelman, P.E. y Kinneary, J.F. (1996). The Merck Index. An encyclopedia of chemicals, drugs and biologicals. Edición 12. Whiehouse Station, Merck, Nueva Jersey. [ Links ]

Cantley, L.C.; Cantley, L.G. y Josephson, L. (1978). Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 272, 552-4. [ Links ]

Carson, B.L.; Ellis, H.V. y McCann, J.L. (1987). Toxicology and biological monitoring of metals in humans. Lewis Publishers, Nueva York, pp. 276-289. [ Links ]

Ciranni, R.; Antonetti, M. y Migliore, L. (1995). Vanadium salts induce cytogenetic effects in vivo treated mice. Mutat. Res. 343, 53-60. [ Links ]

Cohen, M.D.; Klein, C.B. y Costa, M. (1992). Forward mutations and DNA-protein crosslinks induced by ammonium metavanadate in cultured mammalian cells. Mutat. Res. 269, 141-148. [ Links ]

Cooke, M.S.; Evans, M.D.; Dizdaroglu, M. y Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195-1214. [ Links ]

Crans, D.C.; Robin, I. y Theisen, L.A. (1989). Interaction of trace levels of vanadium (IV) and vanadium (V) in biological systems. J. Am. Chem. Soc. 111, 7597-7607. [ Links ]

Crans, D.C.; Amin, S.S. y Keramidas, A.D. (1998). Chemistry of relevance to vanadium in the environment. En: Vanadium in the Environment. Primera parte: Chemistry and Biochemistry (J.O. Nriagu, Ed.). Wiley, Nueva York , pp. 73-96. [ Links ]

Crans, D.C.; Smee, J.J.; Gaidamauskas, E. y Yang, L. (2004). The chemistry and biochemistry of vanadium and biological activities exerted by vanadium compounds. Chem. Rev. 104, 849-902. [ Links ]

Daley, B.; Doherty, A.T.; Fairman, B. y Case, C.P. (2004). Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J. Bone Joint. Surg. Br. 86, 598-606. [ Links ]

D'Cruz, O.J. y Uckun, F.M. (2005). Vaginal contraceptive activity of a chelated vanadocene. Contraception 72, 146-156. [ Links ]

Domingo, J.L. (1996). Vanadium: a review of the reproductive and developmental toxicity. Reprod. Toxicol. 10, 175-182. [ Links ]

EFSA. European Food Safety Authority. (2004). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission Related to the Tolerable Upper Intake Level of Vanadium. EFSA J. 33, 1-22. [ Links ]

Elinder, C.G.; Gerhardsson, L. y Oberdoerster, G. (1988). Biological monitoring of toxic metals -overview. En: Biological monitoring of toxic metals (W.T., Clarkson; L., Friberg; F., Nordberg y R., Sanger, Eds.). Plenum Press, Nueva York , pp. 1-71. [ Links ]

Evangelou, A.M. (2002). Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 42, 249-265. [ Links ]

Fickl, H.; Theron, A.J.; Grimmer, H.; Oommen, J.; Ramafi, G.J.; Steel, H.C.; Visser, S.S. y Anderson, R. (2006). Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic. Biol. Med. 40, 146-155. [ Links ]

Fortoul, T.I.; Quan-Torres, A.; Sanchez, I.; Lopez, I.E.; Bizarro, P.; Mendoza, M.L.; Osorio, L.S.; Espejel-Maya, G.; Avila-Casado, M. del C.; Avila-Costa, M.R.; Colin-Barenque, L.; Villanueva, D.N. y Olaiz-Fernandez, G. (2002). Vanadium in ambient air: concentrations in lung tissue from autopsies of Mexico City residents in the 1960s and 1990s. Arch. Environ. Health 57, 446-449. [ Links ]

French, R.J. y Jones, J.H. (1993). Role of vanadium in nutrition: metabolism, essentiality and dietary considerations. Lif. Sci. 52, 339-346. [ Links ]

Galli, A.; Vellosi, R., Fiorio, R.; Della Croce, C.; del Carratore, R.; Morichetti, E.; Giromini, L.; Rosellini, D. y Bronzetti, G. (1991). Genotoxicity of vanadium compounds in yeast and cultured mammalian cells. Teratog. Carcinog. Mutagen. 11, 175-183. [ Links ]

Gioka, C.; Bourauel, C.; Zinelis, S.; Eliades, T.; Silikas, N. y Eliades, G. (2004). Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent. Mater. 20, 693-700. [ Links ]

Giri, A.K.; Sanyal, R.; Sharna, A. y Talukder, G. (1979). Cytological and cytochemical changes induced through certain heavy metals in mammalian systems. Natl. Acad. Sci. Lett. 2, 391-394. [ Links ]

Gutiérrez-Castillo, M.E.; Roubicek, D.A.; Cebrián-García, M.E.; De Vizcaya-Ruíz, A.; Sordo-Cedeño, M. y Ostrosky-Wegman, P. (2006). Effect of chemical composition on the induction DNA damage by air-borne particulate matter. Environ. Mol. Mutagen. 47, 199-211. [ Links ]

Hartwig, A. (1995). Current aspects in metal genotoxicity. Biometals 8, 3-11. [ Links ]

Hartwig ,A.; Asmuss, M.; Blessing, H.; Hoffmann, S.; Jahnke, G.; Khandelwal, S.; Pelzer, A. y Burkle, A. (2002). Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food Chem. Toxicol. 40, 1179-1184. [ Links ]

Heinz, A.; Rubinson, K.A. y Grantham, J.J. (1982). The transport and accumulation of oxovanadium compounds in human erythrocytes in vitro. J. Lab. Clin. Med. 100, 593-612. [ Links ]

Hirao, T. (2000). Redox reactions via vanadium-induced electron transfer. J. Inorg. Biochem. 80, 27-33. [ Links ]

IARC. International Agency for Research on Cancer. (2006). Monographs on the evaluation of carcinogenic risk to humans. Cobalt in hard-metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. Lyon, Vol. 86. [ Links ]

IPCS. International Programme on Chemical Safety. (1988). Vanadium. Environmental Health Criteria, World Health Organisation, Ginebra, No. 81. [ Links ]

IPCS. International Programme on Chemical Safety. (2001). Vanadium pentoxide and other inorganic vanadium compounds, World Health Organization, Ginebra, No. 29. [ Links ]

Ivancsits, S.; Pilger, A.; Diem, E.; Schaffer, A. y Rüdiger, H.W. (2002). Vanadate induces DNA strand breaks in cultured fibroblasts at doses relevant to occupational exposure. Mutat. Res. 519, 25-35. [ Links ]

Jackson, J.F. y Linskens, H.F. (1982). Metal ion induced unscheduled DNA synthesis in Petunia pollen. Mol. Gen. Genet. 187, 112-115. [ Links ]

Kada, T.; Hirano, K. y Shirasu, Y. (1980). Screening of environmental chemical mutagens by the rec-assay system with Bacillus subtilis. En: Chemical mutagens: Principles and methods for their detection (F.J. de Serres y A. Hollaender, Eds.). Plenum Press, Nueva York , Vol. 5, pp. 149-173. [ Links ]

Kanematsu, N. y Kada, I. (1978). Mutagenicity of metal compounds. Mutat. Res. 53, 207-208. [ Links ]

Kanematsu, N.; Hare, M. y Kada, I. (1980). Rec assay and mutagenicity studies on metal compounds. Mutat. Res. 77, 109-116. [ Links ]

Kleinsasser, N.; Dirschedl, P.; Staudenmaier, R.; Harreus, U.; Wallner, B. (2003). Genotoxic effects of vanadium pentoxide on human peripheral lymphocytes and mucosal cells of the upper aerodigestive tract. Int. J. Environ. Health Res. 13, 373-379. [ Links ]

Lagerkvist, G.; Nordberg, G.F. y Vouk, V. (1986). Vanadium. En: Handbook on the toxicology of metals. Elsevier Science Publishing, Amsterdam, Vol. II, pp. 638-663. [ Links ]

Léonard, A. (1988). Mechanisms in metal genotoxicity: the significance of in vitro approaches. Mutat. Res. 198, 321-326. [ Links ]

Leopardi, P.; Villani, P.; Cordelli, E.; Siniscalchi, E.; Veschetti, E. y Crebelli, R. (2005). Assessment of the in vivo genotoxicity of vanadate: analysis of micronuclei and DNA damage induced in mice by oral exposure. Toxicol. Lett. 158, 39-49 [ Links ]

Lewin, B. (2000). Genes VII. Oxford University Press, Oxford, UK. [ Links ]

Lin, T.S.; Chang, C.L. y Shen, F.M. (2004). Whole blood vanadium in Taiwanese college students. Bull Environ. Contam. Toxicol. 73, 781-786. [ Links ]

Mailhes, J.B.; Hilliard, C.; Fuseler, J.W. y London, S.N. (2003). Vanadate, an inhibitor of tyrosine phosphatases, induced premature anaphase in oocytes and aneuploidy and polyploidy in mouse bone marrow cells. Mutat. Res. 538, 101-107. [ Links ]

Migliore, L.; Bocciardi, R.; Macri, C. y Jacono, F.L. (1993). Cytogenetic damage induced in human lymphocytes by four vanadium compounds and micronucleus analysis by fluorescence in situ hybridization with a centromeric probe. Mutat. Res. 319, 205-213. [ Links ]

Migliore, L.; Scarpato, R.; Falco, P. (1995). The use of fluorescence in situ hybridization with a beta-satellite DNA probe for the detection of acrocentric chromosomes in vanadium-induced micronuclei. Cytogenet. Cell Genet. 69, 215-219. [ Links ]

Migliore, L.; Zotti-Martelli, L. y Scarpato, R. (1999). Detection of chromosome loss and gain induced by griseofulvin, estramustine an vanadate in binucleated lymphocytes using FISH analysis. Environ. Mol. Mutagen. 34, 64-68. [ Links ]

Miramand, P. y Fowler, S. (1998). Bioaccumulation and transfer of vanadium in marine organism. En: Vanadium in the Environmental. Parte I y II (J.O, Nriagu, Ed.). Wiley, Nueva York . [ Links ]

Mukherjee, B.; Patra, B.; Mahapatra, S.; Banerjee, P.; Tiwari, A. y Chatterjee, M. (2004). Vanadium-an element of atypical biological significance. Toxicol. Lett 21, 135-143. [ Links ]

Narayan, R.J. (2005). Nanostructured diamondlike carbon thin films medical applications. Materials Sci. Engin. C 25, 405-416. [ Links ]

Navas, P.; Hidalgo, A. y García-Herdugo, G. (1986). Cytokinesis in onion roots: inhibition by vanadate and caffeine. Cell. Mol. Life Sc. 42, 437-439. [ Links ]

Nechay, N.R.; Nanninga, L.B. y Nechay, S.E. (1986). Vanadyl (VI) and vanadate (V) binding to selected endogenous phosphate, carboxyl, and amino ligand; calculations of cellular vanadium species distribution. Arch. Biochem. Biophys. 251, 128-138. [ Links ]

Nelson, D.L. y Cox, M.M. (2004). Lehninger principles of biochemistry. Freeman W.H., 4a, Nueva York. [ Links ]

NTP. National Toxicology Program. (2002). NTP toxicology and carcinogensis studies of vanadium pentoxide (CAS No. 1314-62-1) in F344/N rats and B6C3F1 mice (inhalation). Natl. Toxicol. Program. Tech. Rep. Ser. 507, 1-343. [ Links ]

Olin K.L., Cherr G.N., Rifkin E. y Keen C.L. (1996). The effects of some redox-active metals and reactive aldehydes on DNA-protein cross-links in vitro. Toxicology 110, 1-8. [ Links ]

Owusu-Yaw, J.; Choen, M.D.; Fernando, S.Y. y Wei, C.I. (1990). An assessment of the genotoxicity of vanadium. Toxicol. Lett. 50, 327-336. [ Links ]

Paton, G.R. y Allison, A.C. (1972). Chromosome damage in human cell cultures induced by metal salts. Mutat. Res. 16, 332-336. [ Links ]

Ramírez, P.; Easstmond, D.A.; Laclette, J.P. y Ostrosky-Wegman, P. (1997). Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploidy cells by sodium arsenite and vanadium pentoxide. Mutat. Res. 386, 291-298. [ Links ]

Rehder, D. (1991). The bioinorganic chemistry of vanadium. Angew. Chem. Int. Ed. Engl. 30, 148-167. [ Links ]

Rehder, D. (2003). Biological and medicinal aspects of vanadium. Inorg. Chem. Commun. 6, 604-617. [ Links ]

Rodríguez-Mercado, J.J. (1996). Genotoxicidad inducida in vitro por sales de vanadio en cromosomas de linfocitos humanos. Tesis de Licenciatura, UNAM. México. [ Links ]

Rodríguez-Mercado, J.J. (2001). Evaluación de los efectos genotóxico y citotóxico inducidos en cultivos de células de sangre periférica expuestos a tetraóxido de vanadio. Tesis de Maestría. UNAM. México. [ Links ]

Rodríguez-Mercado, J.J.; Roldán-Reyes, E.; Altamirano-Lozano, M. (2003). Genotoxic effects of vanadium (IV) in human peripheral blood cells. Toxicol. Lett. 144, 359-369. [ Links ]

Rojas, E.; Valverde, M.; Herrera, L.A.; Altamirano-Lozano, M.A. y Ostrosky-Wegman, P. (1996). Genotoxicity of vanadium pentoxide evaluate by the single cell gel electrophoresis assay in human lymphocytes. Mutat. Res. 359, 77-84. [ Links ]

Roldán, E. y Altamirano, M. (1990). Chromosomal aberrations, sister chromatid exchanges, cell-cycle kinetics and satellite association in human lymphocytes culture exposed to vanadium pentoxide. Mutat. Res. 245, 61-65. [ Links ]

Sabbioni, E.; Pozzi, G.; Devos, S.; Pintar, A.; Casella, L. y Fischbach, M. (1993). The intensity of vanadium (V)-induced cytotoxicity and morphological transformation in BALB/3T3 cell is dependent on glutathione-mediated bioreduction to vanadium (IV). Carcinogenesis 14, 2565-2568. [ Links ]

Sakurai, H. (1994). Vanadium distribution in rats and ADN cleavage by vanadyl complex: implication for vanadium toxicity and biological effects. Environ. Health Perspect. 102, 35-36. [ Links ]

Scior, T.; Guevara-Garcia, A.; Bernard, P.; Do, Q.T.; Domeyer, D. y Laufer, S. (2005). Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini Rev. Med. Chem. 5, 995-1008. [ Links ]

Sharma, R.P.; Flora, J.S.; Drown, D.B. y Oberg, S.G. (1987). Persistence of vanadium compounds in lungs after intracheal instillation in rats. Toxicol. Ind. Health 3, 321-329. [ Links ]

Singh, O.P. (1979). Effects of certain metallic pollutants on plant chromosomes. Tesis Doctoral. Universidad de Calcuta, India. [ Links ]

Stokinger, H.E. (1981). The metals. En: Patty's industrial hygiene and toxicology (G.D. Clayton y F.E. Clayton, Eds.) 3a ed., Wiley, Nueva York , Vol. II A, pp. 1493-1583. [ Links ]

Sun, P. (1987). Toxicity of vanadium and its environmental health standard. Reporte de: Changdu West China University of Medical Sciences, China. [ Links ]

Thompson, K.H. y Orvig, C. (2004). Vanadium compounds in the treatment of diabetes. Met. Ions Biol. Syst. 41, 221-252. [ Links ]

Valko, M.; Morris, H. y Cronin, M.T.D. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12, 1161-1208. [ Links ]

WHO. World Health Organization. (2001). Air quality guidelines for Europe. Copenhague, No. 91. [ Links ]

Woodin, M.A.; Liu, Y.; Neuberg, D.; Hauser, R.; Smith, T. J. y Christiani, D.C. (2000). Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am. J. Ind. Med. 37, 353-363. [ Links ]

Wozniak, K. y Blasiak, J. (2004). Vanadyl sulfate can differentially damage DNA in human lymphocytes and HeLa cells. Arch. Toxicol. 78, 7-15. [ Links ]

Yang, X-G.; Wang, K.; Lu, J. y Crans, D.C. (2003). Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coordination. Chem. Res. 237, 103-111. [ Links ]

Yang, X-G.; Yang, X-D.; Yuan, L.; Wang, K. y Crans D.C. (2004). The permeability and cytotoxicity of insulin-mimetic vanadium compounds. Pharmaceutical Res. 21, 1026-1033. [ Links ]

Zhong, B.Z.; Gu, Z.W.; Wallace, W.E.; Whong, W.Z. y Ong T. (1994). Genotoxicity of vanadium pentoxide in Chinese hamster V79 cells. Mutat. Res. 321 , 35-42. [ Links ]

Recibido: Octubre de 2006; Aprobado: Diciembre de 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons