SciELO - Scientific Electronic Library Online

 
vol.22 número1CARACTERIZACIÓN DE LA MATERIA ORGÁNICA SOLUBLE Y DE LOS ÁCIDOS HÚMICOS EN SUELO ACONDICIONADO CON LODO RESIDUAL FRESCO O COMPOSTADOEVALUACIÓN DE LA CALIDAD DEL AIRE MEDIANTE EL USO DE BIOINDICADORES EN LA PROVINCIA DE SAN LUIS, ARGENTINA índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista internacional de contaminación ambiental

versão impressa ISSN 0188-4999

Rev. Int. Contam. Ambient vol.22 no.1 Ciudad de México Jan./Mar. 2006

 

Articles

INFLUENCE OF TWO POLYCYCLIC AROMATIC HYDROCARBONS ON SPORE GERMINATION, AND PHYTOREMEDIATION POTENTIAL OF Gigaspora margarita-Echynochloa polystachya SYMBIOSIS IN BENZO[a]PYRENE-POLLUTED SUBSTRATE

Alejandro Alarcón1  2 

Julián Delgadillo-Martínez1 

Alicia Franco-Ramírez1 

Frederick T. Davies Jr.2 

Ronald Ferrera-Cerrato1 

1 Microbiología de Suelos. Colegio de Postgraduados. Montecillo. Carretera México-Texcoco km 36.5, Montecillo 56230, Estado de México. México

2 Department of Horticultural Sciences. Texas A&M University. College Station 77843-2133, Texas. EUA


ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are ubiquitous microorganisms that occur in contaminated soils. However, little is known about the responses of AMF with organic contaminants such as polycyclic aromatic hydrocarbons (PAH). The first objective of this study was to evaluate the influence of two PAH on spore germination of Gigaspora margarita Becker & Hall. Water-agar plates were contaminated with phenanthrene (PHE) and benzo[a]pyrene (BaP) at several concentrations: 0, 25 (0.1 mM BaP & 0.15 PHE), 50 (0.2 mM BaP & 0.3 mM PHE), 75 (0.3 mM BaP & 0.45 mM PHE), and 100 μg mL-1 (0.4 mM BaP & 0.6 mM PHE), respectively. The second objective consisted on the evaluation of the responses of the symbiosis between G. margarita and Echinochloa polystachya (H.B.K.) Hitch. to increased concentrations of BaP (0, 25 (0.1 mM), 50 (0.2 mM), 75 (0.3 mM), and 100 mg kg-1 (0.4 mM) under plant growth chamber conditions. Spore germination and hyphal length were drastically reduced by PHE. Reduction of spore germination was higher than 90% in presence of PHE. In presence of BaP, spore germination reduction was 42.8% when exposed at 100 μg mL-1 (0.4 mM). Spores that germinated in presence of 75 (0.3 mM) and 100 (0.4 mM) μg BaP mL-1 had greater hyphal elongation. BaP did not affect shoot dry mass of non-mycorrhizal or mycorrhizal E. polystachya. Mycorrhizal plants showed higher dehydrogenase activity in the rhizosphere soil at 0, 0.2 and 0.3 mM BaP, but reduced root polyphenol oxidase activity at 0 and 0.1 and higher at 0.3 mM BaP than non-mycorhizal plants. Dissipation of BaP was higher in non-mycorrhizal plants than mycorrhizal plants. Echinochloa polystachya showed an intrinsic capability on dissipating PAH from its rhizosphere.

Key words: arbuscular mycorrhizal fungi; PAH; rhizosphere

RESUMEN

Los hongos micorrízicos arbusculares (HMA) son microorganismos cosmopolitas que se pueden encontrar en suelos contaminados. No obstante, pocos estudios se han enfocado a la evaluación de las respuestas de HMA ante contaminantes orgánicos como los hidrocarburos poliaromáticos (HAP). El primer objetivo de este trabajo consideró la evaluación del efecto de dos HAP sobre la germinación de esporas de Gigaspora margarita Becker & Hall. Placas con agar-agua fueron contaminadas con fenantreno (PHE) o benzo[a]pireno (BaP) en diferentes concentraciones: 0, 25 (0.1 mM BaP y 0.15 PHE), 50 (0.2 mM BaP y 0.3 mM PHE), 75 (0.3 mM BaP y 0.45 mM PHE), y 100 μg mL-1 (0.4 mM BaP y 0.6 mM PHE), respectivamente. El segundo objetivo consistió en la evaluación de las respuestas de la simbiosis entre G. margarita y Echinochloa polystachya (H.B.K.) Hitch. ante la presencia de diferentes concentraciones de BaP (0, 25 (0.1 mM), 50 (0.2 mM), 75 (0.3 mM), y 100 mg kg-1 (0.4 mM), bajo condiciones de cámara de crecimiento. La germinación de esporas y longitud hifal fueron significativamente inhibidas por PHE, el cual produjo una disminución del 92%. En el caso de BaP, la germinación de esporas disminuyo en 42.8% ante 100 μg mL-1 (0.4 mM). Las esporas que germinaron en presencia de 75 (0.3 mM) y 100 (0.4 mM) μg BaP mL-1, tuvieron mayor elongación hifal. La presencia del BaP no produjo efectos negativos en el peso seco de la parte aérea de E. polystachya con la inoculación o no del HMA. Las rizosferas de plantas micorrizadas presentaron mayor actividad deshidrogenasa ante 0, 0.2 y 0.3 mM BaP, pero reducida actividad polifenoloxidasa en la raíz ante 0 y 0.1, y mayor ante 0.3 mM BaP, en comparación con plantas no inoculadas. La disipación del BaP de la rizosfera fue mayor en plantas no inoculadas en comparación con plantas micorrizadas. Echinochloa polystachya al parecer tiene una capacidad intrínseca para disipar BaP de su rizosfera.

Palabras clave: hongos micorrízicos arbusculares; HAP; rizósfera

Full text available only in PDF format.

REFERENCES

Baran, S.; Bielinska, J.E. and Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221-232. [ Links ]

Barea, J-M.; Pozo, M.J.; Azcón, R. and Azcón-Aguilar, C. (2005). Microbial cooperation in the rhizosphere. J. Exp. Bot. 56, 1761-1778. [ Links ]

Becard, G. and Fortin, J.A. (1988). Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 211-218. [ Links ]

Binet, Ph.; Portal, J.M. and Leyval, C. (2000). Fate of poly-cyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 227, 207-213. [ Links ]

Cabello, M.N. (1997). Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol. Ecol. 22, 233-236. [ Links ]

Cabello, M.N. (1999). Effectiveness of indigenous arbuscular mycorrhizal fungi (AMF) isolated from hydrocarbon polluted soils. J. Basic Microbiol 39, 89-95. [ Links ]

Cabello, M.N. (2001). Mycorrhizas and hydrocarbons. In: Fungi in bioremediation. (G.M., Gadd, Ed.), Cambridge University Press. UK, pp. 456-471. [ Links ]

Casida, L.E. Jr.; Klein, D.A. and Santoro, T. (1964). Soil dehydrogenase activity. Soil Sci. 93, 371-376. [ Links ]

Cerniglia, C.E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351-368. [ Links ]

Gaspar, M.L.; Cabello, M.N.; Cazau, M.C. and Pollero, R.J. (2002). Effect of phenanthrene and Rhodotorula glutinis on arbuscular mycorrhizal colonization on maize roots. Mycorrhiza 12, 55-59. [ Links ]

Davies, F.T. Jr.; Puryear, J.D.; Newton, R.J.; Egilla, J.N. and Saraiva, G.J.A. (2001). Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol. 158, 777-786. [ Links ]

De Jong, E. (1980). The effect of a crude oil spill on cereals. Environ Pollution (Series A) 22, 187-196. [ Links ]

Gianfreda, L.; Rao, M.A.; Piotrowska, A.; Palumbo, G. and Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci. Total Environ. 341, 265-279. [ Links ]

Günther, T.; Dornberger, U. and Fritsche, W. (1996). Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33, 203-215. [ Links ]

Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K. and Barea, J-M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1-16. [ Links ]

Johansson, J.F.; Paul, L.R. and Finlay, R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48, 1-13. [ Links ]

Joner, E.J. and Leyval, C. (2003a). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ. Sci. Technol 37, 2371-2375. [ Links ]

Joner, E.J. and Leyval, C. (2003b). Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie 23, 495-502. [ Links ]

Juhasz, A.L. and Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a]pyrene. Intern. Biodeter. Biodegr. 45, 57-88. [ Links ]

Leyval, C. and Binet, P. (1998). Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J. Environ. Qual. 27, 402-407. [ Links ]

Liu, S.L.; Luo, Y.M.; Ho, Z.H.; Wu, L.H.; Ding, K.Q. and Christie, P. (2004). Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ. Geochem. Health 26, 285-293. [ Links ]

Ma, Y.; Zhang, J.Y. and Wong, M.H. (2003). Microbial activity during composting of anthracene-contaminated soil. Chemosphere 52, 1505-1513. [ Links ]

Meharg, A.A. and Cairney, J.W.G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv. Ecological Res. 30, 69-112. [ Links ]

Merkl, N.; Schultze-Kraft, R. and Infante, C. (2005). Phytoremediation in the tropics- influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollution 138, 86-91. [ Links ]

Nakajima, D.; Kojima, E.; Iwaya, S.; Suzuki, J. and Suzuki, S. (1996). Presence of 1-Hydroxypyrene conjugates in woody plants leaves and seasonal changes in their concentrations. Environ. Sci. Technol. 30, 1675-1679. [ Links ]

Newman, L.A. and Reynolds, C.M. (2004). Phytodegradation of organic compounds. Current Opinion Biotechnol. 15, 225-230. [ Links ]

Quiñones, A.E.E.; Ferrera-Cerrato, R. and Alarcón, A. (2004). Occurrence of arbuscular mycorrhizal fungi in soils polluted with hydrocarbons from Minatitlán, Veracruz. In: Avance en el conocimiento de la biologia de las micorrizas. (J.T., Frias-Hernández; V., Olalde-Portugal and R., Ferrera-Cerrato, Eds.), Universidad de Guanajuato-Fundación Guanajuato Produce. pp 291-302 [In spanish]. [ Links ]

Racusen, D. and Foote, M. (1965). Protein synthesis in dark grown bean leaves. Can. J. Bot. 43, 817-824. [ Links ]

Reynolds, C.M. and Skipper, H.D. (2005). Bioremediation of contaminated soils. In: Principles and applications of soil microbiology. (D.M, Sylvia; P.G., Hartel; J.J., Furhmann and D.A., Zuberer, Eds.), 2nd edition. Pearson-Prentice Hall Upper Saddle, New Jersey. pp 536-561. [ Links ]

Rilling, M.C. and Steinberg, P.D. (2002). Glomalin production of an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol. Biochem. 34, 1371-1374. [ Links ]

Rivera-Cruz, M.C. (2001). Microorganismos rizosféricos de los pastos alemán (Echinochloa polystachya HBK Hitchc.) y cabezón (Paspalum virgatum L.) en la degradación del petróleo crudo y el benzo(a)pireno. Tesis Doctor en Ciencias. Colegio de Postgraduados. Montecillo, Estado de México. [In spanish]. [ Links ]

Ryan, J.A.; Bell, R.M.; Davidson, J.M. and O'Connor, G.A. (1988). Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17, 2299-2323. [ Links ]

Schwab, A.P.; Su, J.; Wetzel, S.; Pekarek, S. and Banks, M.K. (1999). Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ. Sci. Technol. 33, 1940-1945. [ Links ]

Sarand, I.; Timonen, S.; Nurmiaho-Lassila, E-L.; Konula, T.; Haahtela, K.; Romanntschuk, M. and Sen, R. (1988). Microbial biofilms and catabolic plasmid harboring degradative fluorescent pseudomonads in Scots Pine mycorrhizospheres developed on petroleum contaminated soils. FEMS Microbiol. Ecol. 27, 115-126. [ Links ]

SAS Institute Inc. (2000). The SAS system for windows, release 8.01. SAS Institute Inc, Cary, North Carolina. USA. [ Links ]

Smith, S.E. and Read, D.J. (1997). Mycorrhizal symbiosis, 2nd edition. Academic Press, London. [ Links ]

Soroka, J.A. and Soroka, K.B. (2002). Spectral correlation methods in multicomponent analysis. Part I. Determination of hydrocarbons using IR and UV spectra. Chemical Analysis (Chemica Analityczna) 47, 49-59. [ Links ]

Sutherland, J.B.; Raffi, F.; Khan, A.A. and Cerniglia, C.L. (1995). Mechanisms of polycyclic aromatic hydro-carbon degradation. In: Microbial transformation and degradation of toxic organic chemicals. (L.Y., Young and C.E., Cerniglia, Eds.), Willey-Liss, Inc. New York. pp 269-306. [ Links ]

Tisserant, B.; Gianinazzi-Pearson, V.; Gianinazzi, S. and Gollotte, A. (1993). In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res. 97, 245-250. [ Links ]

Trasar-Cepeda, C.; Leiros, M.C.; Seoane, S. and Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollution. Soil Biol. Biochem. 32, 1867-1875. [ Links ]

Trouvelot, A.; Kough, J. and Gianinazzi-Pearson, V. (1986). Evaluation of VA infection levels in roots systems. Research for estimation methods having a functional significance. In: Physiological and genetical aspects of mycorrhiza. (V., Gianinazzi-Pearson and S., Gianinazzi, Eds.) INRA-Press. Paris. pp. 217-221. [ Links ]

Tommerup, I.C. (1983). Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans. Br. Mycol. Soc. 81, 381-387. [ Links ]

Tommerup, I.C. and Briggs, G.G. (1981). Influence of agricultural chemicals on germination of vesicular-arbuscular endophyte spores. Trans. Br. Mycol. Soc. 76, 326-328. [ Links ]

Varela, F.L.; Quiñones-Aguilar, E.E.; Alarcón, A. and Ferrera-Cerrato, R. (2000). Arbuscular mycorrhizal fungi from hydrocarbon-contaminated soils. In: Proceedings First Iberoamerican Meeting and Third National Symposium of Mycorrhizal Symbioses. September 27-29, 2000. Guanajuato, Mexico. [In spanish]. [ Links ]

Received: January 2006; Accepted: April 2006

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License