SciELO - Scientific Electronic Library Online

 
vol.21 número2TOXICIDAD CRÓNICA DE LAS AGUAS RECEPTORAS DE EFLUENTES DE INDUSTRIAS DE CELULOSA SOBRE LARVAS DE Chironomus piger índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista internacional de contaminación ambiental

versión impresa ISSN 0188-4999

Rev. Int. Contam. Ambient vol.21 no.2 Ciudad de México abr./jun. 2005

 

Artículos de revisión

MECANISMOS DE FITORREMEDIACIÓN DE SUELOS CONTAMINADOS CON MOLÉCULAS ORGÁNICAS XENOBIÓTICAS

Sugey López-Martínez1 

Margarita E. Gallegos-Martínez2 

Laura J. Pérez Flores3 

Mariano Gutiérrez Rojas4 

1Programa de Doctorado en Biología Experimental

2Departamento de Hidrobiología

3Departamento de Ciencias de la Salud.

4Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa. Apdo. Postal 55-535, D.F. 09340, México. Correo electrónico: slm001@yahoo.com


RESUMEN

Estudios recientes han demostrado que algunas plantas con determinadas características incrementan la biodegradación de una variedad amplia de moléculas orgánicas xenobióticas en suelos contaminados. Sin embargo, se sabe poco acerca de la participación directa o indirecta y de los mecanismos y etapas que ocurre en las plantas para transformar estos compuestos. El objetivo de esta revisión es mostrar a la fitorremediación como una opción tecnológica útil para la limpieza de suelos contaminados. Se hace una revisión de los mecanismos que la planta utiliza, las interacciones que se llevan al cabo en el suelo entre planta, microorganismos y compuestos orgánicos xenobióticos. Estos conocimientos permitirán proponer soluciones a los problemas de la contaminación y la eventual recuperación de suelos.

Palabras clave: remediación; fitodegradación; compuestos orgánicos xenobióticos

ABSTRACT

Several studies have demonstrated that certain particular plants increase biodegradation of a number of exogenous organic molecules in contaminated soils. However, information on mechanisms, stages and the role of plants, direct or even indirect, in transforming such compounds is scarce. The objective of this work is to put on view phytoremediation as a technological helpful alternative for cleaning contaminated soils. General mechanisms and particular stages that plants use, as well as the complex interactions plants-native microorganisms-xenobiotics in the soil are reviewed. This knowledge will allow proposing solutions to problems of contamination and eventually recovering sites and soils.

Key words: remediation; phytodegradation; xenobiotics

Texto completo disponible sólo en PDF.

REFERENCIAS

Adler, P.; Rajeev, A.; El Ghaouth, D.; Glenn, M. y Solar, J. (1994). Bioremediation of phenolic compounds from water with plant root surface peroxidases. J. Environ. Qual. 23, 1113-1117. [ Links ]

Aitchison, E.; Kelley, S.; Alvarez, P. y Schnoor, J. (2000). Phytroremediation of 1,4-dioxane by hybrid poplar trees. Water Environ. Res. 72, 313-321. [ Links ]

Anderson, T.; Guthrie, E. y Walton, B. (1993). Bioremediation in the rhizosphere. Environ. Sci. Technol. 27, 2630-2636. [ Links ]

Anderson, T. y Coats, J. (1994). Bioremediation through rhizosphere technology. En: ACS Symposium Series. Am. Chem. Soc. Washington D.C. Vol. 563, pp 204-215. [ Links ]

Anderson, T. y Coats, J. (1995). Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J. Environ. Sci. Heal. 30, 473-484. [ Links ]

April, W. y Sims, R. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20, 253-265. [ Links ]

Chapple, C. (1998). Molecular-genetic analysis of plant cytochrome P450-dependent monooxigenases. Plant Mol. Biol. 49, 311-43. [ Links ]

Crowley, E.; Alvey, S. y Gilbert, E. (1997). Rhizosphere ecology of xenobiotic-degrading microorganims. En Phytoremediation of soil and water contamination. Capítulo 2, 306 p. [ Links ]

Cunningham, S.; Shann, J.; Crowley, D. y Anderson, T. (1997). Phytoremediation of contaminated soil and water. En: Phytoremediation of Soil and Water Contaminants (E. L., Kruger, T. A., Anderson y J. R., Coats, Eds.) Am. Chem. Soc, Washington DC pp. 2-17. [ Links ]

Dec, J. y Bollang, J. (1994). Use of plant material for the decontamination of water polluted with phenols. Biotechnol. Bioeng. 44, 1132-1139. [ Links ]

Dushenkov, S. (2003). Trends in phytoremediation of radionuclides, Plant and Soil. 249, 167 - 175 [ Links ]

Elwes, J. (1999). Principios de Biorrecuperación, Mac Graw Hill, México, 275 p. [ Links ]

Günter, N. y Martinoia, E. (2002). Closter roots an underground adaptation for survival in extreme environments. Trends Plant Sci. 4, 162-167. [ Links ]

Harvey, P.; Campanela, B.; Castro, P.; Harms, H.; Lichtfouse, E.,; Schaffner, A.; Smrcek, S. y Werck, D. (2002). Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ. Sci. Pollut. Res. Int. 9, 29-47. [ Links ]

Hong, M.; Farmayan, W.; Dortch, I. y Chiang, C. (2001). Phytoremediation of MTBE from a groundwater plume. Environ. Sci. Technol. 35, 1231-1239. [ Links ]

Jakoby, W. y Ziegler, D. (1990). The enzymes of detoxication. J. Biol. Chem. 34, 20715-20718. [ Links ]

Jian wei, W.; Chen, J.; William, R. y Cunningham, R. (1997). Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800-805. [ Links ]

Joner, E. y Leyval, C. (2003). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ. Sci. Technol. 37, 2371-2375. [ Links ]

Kassel, G.; Ghoshal, D. y Goyal, A. (2002) Phytoremediation of trichloroethylene using hybrid poplar. Physiol. Mol. Biol. Plants. 8, 3-10. [ Links ]

Kelley, S.; Aitchison, E.; Deshpande, M.; Schnoor, J. y Alvarez, P. (2001). Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190. Water Res. 35, 3791-3800. [ Links ]

Khatisashvili, G.; Gordeziani, M.; Kvesitadze, G. y Korte, F. (1997). Plant monoxygenases: participation in xenobiotic oxidation. Ecotoxicol. Environ. Saf. 36, 118 -122. [ Links ]

Kvesitadze, G.; Gordeziani, M.; Khatisashvili, G.; Sadunishvili y Ramsden, J. (2001). Some aspects of the enzymatic basic of phytoremediation. J. Biol. Phys. Chem. 1, 49-57. [ Links ]

Lagrega, M. (1996). Gestión de residuos tóxicos trata miento, eliminación y recuperación de suelos. Mc Graw Hill, México, 182 pp. [ Links ]

Marjories, S.; Hong, F. W.; Farmayan, J. I. y Chen, Y. C. (2001). Phytoremediation of MTBE from a Grounwater plume. Environ. Sci. Technol. 35, 1231-1233. [ Links ]

Miya, K. y Firestone, K. (2001). Bioremediation and biodegradation. J. Environ. Qual. 30, 1911-1918 . [ Links ]

Newman, L.; Wang, X.; Muiznieks, I.; Ekuan, G.; Ruszaj, M.; Cortellucci, R.; Domroes, D.; Karscig, G.; Newman, T.; Crampton, R.; Hashmonay, R.; Yost, M.; Heilman, P.; Duffy, J.; Gordon, M. y Strand, S. (1999). Remediation of trichloroethylene in an artificial aquifer with trees: A controlled field study. Environ. Sci. Technol. 33, 2257-2265. [ Links ]

Núñez, L.; Meas, Y.; Ortega, B. y Olguín, J. (2004). Fitorremediación fundamentos y aplicaciones. Ciencia. 69-82 [ Links ]

Orchard, J.; Doucette, J.; Chard, K. y Bugbee, B. (2000). Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environ. Toxicol. Chem. 19, 895-903. [ Links ]

Pflugmancher, S. y Sanderman, H. (1998 ). Cytocrome P450 monoxigenases for fatty acids and xenobiotic in marine macroalgae. Plant Physiol. 117, 123-128. [ Links ]

Pivetz, B.; Cochran, R. y Huling, S. (1997). Abstract: Phytoremediation of PCP and PAH- contaminated soil. Poster 54. In 12th Annual Conference on Hazardous Waste Research Abstracts Book, May 19-22, Kansas City, Mo. pp 145. [ Links ]

Robineau, T.; Batard, Y.; Nedelkina, S.; Cabello-Hurtado, F.; LeRet, M.; Sorokine, O.; Didierjean, L. y Werk-Reichhart, D. (1998 ). The chemical inducible plant Cytochrome CYP76B1 actively metabolizes phenylureas and others xenobiotics. Plant Physiol. 118 , 1049-1056. [ Links ]

Rubin, E. y Ramaswami, A. (2001). The potential for phytoremediation of MTBE. Water Res. 35, 1348 -1353. [ Links ]

Sanderman, H. (1992). Plant metabolism of xenobiotics. Trends Plant. Sci. 1, 82-84. [ Links ]

Schaffer, A.; Messener, F.; Langebartels, C. y Sanderman, H. (2002). Genes and enzymes for in- plant phytoremediation of air waste and soils. Acta Biotechnol. 22, 141-152. [ Links ]

Senan, R. y Abraham, T. (2004). Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation. 4, 275-280 [ Links ]

Siciliano, S.; Germida, J.; Banks, K. y Creer, C. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon. Appl. Environ. Microbiol. 69, 483-489. [ Links ]

Telysheva, G.; Dizhbite, T.; Lebedeva, G.; Rossinskaja, G.; Jurkjane, V.; Treikale, O.; Yiesturs, U. y Daugavietis, M. (2002). Lignin- based products stimulating soil phytoremediation. Acta Biotechnol. 22, 167-173. [ Links ]

USEPA. (1995). Soil vapor extraction (SVE) enhancement technology resource guide: air sparging, bioventing, fracturing, thermal enhancement. EPA 542-B-95-003. [ Links ]

USEPA. (1996). Bioremediation of hazardous waste site: practical approaches to implementation. EPA 625-K-96-00. [ Links ]

USEPA. (1997). Aerobic biodagradation of BETEX in acuifers material. Environmental Research Brief. EPA 600-S-97-033. [ Links ]

USEPA. (1999). The hazardous waste clean-up Information (CLU-IN) World Wide Web Site EPA-542-F-99-002. [ Links ]

Varazashvili, T.; Khatisashvili, G.; Kurashvili, M.; Pruidze, M.; Ananiashvili, T.; Zaalishvili, G. y Gordeziani, M. (2001a). Nitrobenzene oxidizing enzymes in plant cells. J. Biol. Phy. Chem. 1, 85-88. [ Links ]

Varazashvili, T.; Zaalishvili, G.; Kurashvili, M.; Pruidze, M. y Gordeziani, M. (2001b). Participation of the plant monoxoxygenase system in adaptation to environmental stress. J. Biol. Phy. Chem. 1, 38-42. [ Links ]

Walton, B.; Hoylman, A.; Pérez, M. y Anderson, T. (1994). Rhizosphere microbial communities as a plant defense against toxic substances in soils. ACS Symposium Am. Chem. Soc. Series 563, Washington, DC. [ Links ]

Watt, M. y Evans, J. (1999). Proteoid roots physiology and development. Plant Physiol. 121, 317-323. [ Links ]

Werck, D.; Hehn, A. y Didierjean, L. (2000). Cytochrome P450 for engineering herbicide tolerance. Trends Plant Sci. 5, 116-123. [ Links ]

Wetzel, S.; Banks, M. y Schwab, A. (1997). Rhizosphere effects on the degradation of pyrene and anthracene in soil. En: Phytoremediation of soil and water contaminants. (E.L., Kruger; T.A., Anderson and J.R., Coats, Eds.), ACS Am. Chem. Soc. Symposium Series 664. Washington, DC. [ Links ]

Williams, R. (1959). Detoxification mechanisms, New York, N.Y. Drug Metabolism Reviews. 14, 559-607. [ Links ]

Yang, X.; Margolies D.; Zhu, K. y Buschman, L. (2001). Host plant- induced changes in detoxification enzymes and susceptibility to pesticide in the two spotted spider mite (Acari: Tetranychidae). Entomol. Soc. of America. 94, 381-387. [ Links ]

Recibido: Octubre de 2004; Aprobado: Febrero de 2005

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons