SciELO - Scientific Electronic Library Online

 
vol.38 número3Respuesta morfo-productiva de plantas de pimiento morrón biofertilizadas con Pseudomonas putida y dosis reducida de fertilizantes sintéticos en invernaderoLa micorriza arbuscular como biofertilizante en cultivo de café índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Terra Latinoamericana

versão On-line ISSN 2395-8030versão impressa ISSN 0187-5779

Terra Latinoam vol.38 no.3 Chapingo Jul./Set. 2020  Epub 12-Jan-2021

https://doi.org/10.28940/terra.v38i3.656 

Special number

Maize yield response to bio-inoculation and chemical fertilization reduction under field conditions

Ramón Zulueta-Rodríguez1 
http://orcid.org/0000-0001-8314-6598

Fernando Carlos Gómez-Merino2 
http://orcid.org/0000-0001-8496-2095

Isabel Alemán-Chávez1 
http://orcid.org/0000-0002-1389-5419

María del Carmen Núñez-Camargo1 
http://orcid.org/0000-0002-6662-484X

Liliana Lara-Capistrán1   
http://orcid.org/0000-0002-7448-6918

1Universidad Veracruzana, Facultad de Ciencias Agrícolas, Campus Xalapa. Circuito Universitario Gonzalo Aguirre Beltrán s/n, Zona Universitaria. 91090 Xalapa, Veracruz, México.

2Colegio de Postgraduados, Campus Córdoba. Carretera Federal Córdoba-Veracruz km 348, congregación Manuel León. 94946 Amatlán de Los Reyes, Veracruz, México.


Summary:

Soil microorganisms often play a strong ecological and economic role in agricultural production systems. In this study the agro-biological response to inoculation or co-inoculation of arbuscular mycorrhizal fungi (AMF), rhizobacteria (Azospirillum brasilense, Ab), and reduced dose of inorganic fertilizer (IF) on maize (Zea mays L.) crop was evaluated under field conditions. This study was conducted within the experimental field La Bandera in the municipality of Actopan, Veracruz, Mexico, property of the School of Agricultural Science, Universidad Veracruzana, Campus Xalapa (FCA-UV). The evaluated treatments were: T1: (Traditional management of the producer (control group), TM) with total inorganic fertilization (100% IF); T2: (inoculation of the AMF); T3: (inoculation of Ab); T4: (co-inoculation of AMF + Ab); T5: (inoculation of AMF + 50% IF); T6: (inoculation of Ab + 50% IF); and T7: (co-inoculation of AMF + Ab + 50% IF), analyzing plant height (cm), length and width of the flag leaf (cm), stem diameter (mm), arbuscular mycorrhizal colonization percentage, colony forming units (CFU) and total maize grain production (kg). These variables were analyzed using one-way analysis of variance (ANOVA) and the post-hoc Fisher's Least Significant Difference (LSD) test with a significance level of 5% (α = 0.05) for comparison of means. The results indicated significant differences between the treatments (Fisher’s LSD, P ≤ 0.05) for height, flag leaf length and width with increments of 75.59, 75.43, and 28.68% in the AMF + Ab + 50% IF treatment compared to the control group. For stem diameter (44.73%) and grain weight (74.21%), the Ab + 50% IF treatment showed increased presence of CFU·mL-1 (198). The positive interactions between AMF and Ab had a higher percentage of mycorrhizal colonization (62.7%) compared to the other treatments. The best results were observed in the majority of the variables evaluated where these microorganisms interacted in reduced fertilization dose (AMF + Ab + 50% IF).

Index words: Azospirillum brasilense; arbuscular mycorrhizal fungi; simple and dual inoculation; Zea mays

Resumen:

El efecto de los microorganismos del suelo suele ser de gran transcendencia ecológica y económica en los sistemas de producción agrícola. Por ello se estimó la respuesta agrobiológica de la inoculación o coinoculación de hongos micorrízicos arbusculares (HMA), rizobacterias (Azospirillum brasilense, Ab) y dosis reducida de fertilizante inorgánico (FI) en el cultivo de maíz (Zea mays L.) en campo. El experimento se realizó en el campo experimental “La Bandera” ubicado en el municipio de Actopan, Veracruz, México, los tratamientos fueron: T1: (Manejo tradicional del productor, MT), T2: (inoculación de los HMA), T3: (inoculación de Ab), T4: (coinoculación de HMA + Ab), T5: (inoculación de HMA + 50% FI), T6: (inoculación de Ab+50% FI y T7: (coinoculación de HMA + Ab + 50% FI). Las variables registradas fueron altura de la planta (cm), largo y ancho de la hoja bandera (cm), diámetro del tallo (mm), porcentaje de colonización micorrízica arbuscular, unidades formadoras de colonias (UFC) y producción total de granos de maíz (kg). Dichas variables se analizaron mediante un análisis de varianza (ANOVA) y la prueba LSD de Fisher con un nivel de significación del 5% (α = 0.05) fue utilizada para la comparación de medias. El ANOVA reveló significación estadística entre los tratamientos (LSD a P ≤ 0.05) para las variables altura, largo y ancho de la hoja bandera, con incrementos de 75.59, 75.43 y 28.68% en el tratamiento HMA + Ab + 50% FI respecto a las plantas-testigo. En diámetro del tallo y peso del grano el tratamiento que promovió incrementos de 44.73%, 74.21% y una mayor presencia de UFC mL-1 (198) fue Ab+50% FI. La interacción entre HMA y Ab presentó un mayor porcentaje de colonización micorrízica (62.7%) en forma comparativa entre los demás tratamientos. Los mejores resultados se presentaron en la mayoría de las variables evaluadas donde estos microorganismos interactuaron en dosis reducida de fertilización (HMA + Ab + 50% FI).

Palabras clave: Azospirillum brasilense; hongos micorrizógenos arbusculares; inoculación simple y dual; Zea mays

Introduction

In 2017, the State of Veracruz occupied eighth place in maize (Zea mays L.) crop production at national level with 1 268 916 tons (Mg) and a negative percentage in harvested volume (-0.5%) from 2012-2017 (SAGARPA-SIAP, 2018) with an average annual yield of 2.292 Mg ha-1 (SIAP, 2018). Nevertheless, the traditional and subsistence agricultural methods are usually non-sufficient to satisfy the growing consumption demand of the population, in such a way that it is practically impossible to boost the productivity of this crop.

Although the variables related to feasibility and competitiveness of the Poaceae family are diverse, certain environmental and nutritional factors are required for its adequate growth and development (CIMMYT, 2016). These factors are not often in a good balance to assure the desirable quality and agronomic characteristics to the producers, which makes it necessary to turn to integral management of chemical and organic fertilizers, supplemented with microbiological inoculants to achieve a more efficient response at harvest (Alvarado et al., 2018).

However, facing the serious negative effects for the environment and public health that derive from the indiscriminate use of agrochemicals and pesticides (Zepeda-Jazo, 2018; CCMSS, 2019), biofertilizers have become a technologically and ecologically sustainable alternative (Tomer et al., 2016; Okur, 2018) to increase productivity and reduce soil deterioration and harm caused by pest insects and pathogens (Kumar et al., 2017; Apeh, 2018).

In such context, the positive response of the maize plants to microorganism inoculation - as with Azospirillum brasilense (Ab) - is not only valuable to promote its flowering (Uribe et al., 2007) and increase crop production (Portugal et al., 2016) but also - because of its proven capacity to fix atmospheric nitrogen (Brusamarello-Santos et al., 2017) - adhere to roots and modulate A. brasilense-Z. mays interaction (D’Angioli et al., 2017), reduce field fertilization costs (Aguado-Santacruz et al., 2012), increase cultivation feasibility, and with it guarantee its consumption as food for humans, poultry farming and livestock herd (García-Olivares et al., 2012).

On the other hand, among the scientific community, research has spread out that arbuscular mycorrhizal fungi (AMF) have a real bearing on their host growth and development by improving the physiological mechanisms that promote photosynthetic capacity, nutrient capture, and biomass production with agricultural value (Anozie and Orluchukwu, 2018; Xu et al., 2018), even when the disposition for phosphorus acquisition in field conditions is a limiting factor for its cultivation (Wang et al., 2018) or soil is infested by phytoparasite nematods, such as Pratylenchus zeae and P. brachyurus (Brito et al., 2018).

Nonetheless, the simultaneous interaction of this type of microorganisms - also known as synergism - may strengthen the benefits that may derive from them (Zambrano and Díaz, 2015; Pérez de Luque et al., 2017), among which those that stand out are early mycorrhization and mutualism established with rhizobacteria (Cano, 2011); it may also allow reducing significantly the application of chemical synthesis for fertilizers in the plots sown with these Poaceae.

Similarly, Uribe and Dzib (2006) and Rojas and Fernández (2011) applied several microbial inoculants in maize and obtained similar benefits to those that are reported in this study. Additionally, these bioinoculants regenerate the natural soil conditions earlier without causing an important decrease in crop yield (Díaz et al., 2008), improving growth and grain biomass per maize cob with the addition of only 50% of the fertilizer dosage recommended (142-70-00 kg ha-1) (Montejo-Martínez et al., 2018). Therefore, the objective of this research was to prove the influence of inoculation and co‑inoculation of the AMF, A. brasilense, and the reduced inorganic fertilizer dosage in the agronomic behavior of maize (Zea mays L.) crop in field conditions.

Materials and Methods

Location and environmental conditions of the experimental site

Research was performed in the experimental field “La Bandera” of the School of Agricultural Science (FCA, for Facultad de Ciencias Agrícolas), Universidad Veracruzana (UV), Campus Xalapa, located in the municipality of Actopan, Veracruz, at 19° 27’ 50” N and 96° 33’ 12” W during the 2015 spring-summer cycle (Zulueta-Rodríguez et al., 2015).

The experiment was established on Vertic Calcaric type Phaeozem soil more or less deep (41-60 cm) in mostly flat terrain (<2%) with the following distinctive characteristics determined in the Soil Laboratory of the FCA-UV, according to the Mexican norm NOM-021-SEMARNAT-2000 (SEMARNAT, 2002): pH moderately acid (5.8); phosphorus not detectable; organic carbon reserve 36.54 Mg ha-1; active carbonates (0-20 cm) 9.4%; organic matter 0.1%; and nitrogen 0.05%.

The climate in the site is tropical, warm, sub-humid Aw0(w)(i')gw” with average annual temperature of 24.8 °C, annual precipitation close to 900 mm (Zulueta-Rodríguez et al., 2015); summer rainfall regime, little thermal oscillation (5-7 °C), and the temperature has an intertropical pattern with midsummer drought (García, 1987).

Treatment application

A randomized complete block design was used with seven experimental treatments: (T1) Traditional product management (TM), control group with total inorganic fertilization (100% IF); (T2) Arbuscular mycorrhizal fungi (AMF); (T3) Azospirillum brasilense (Ab); (T4) AMF + Ab; (T5) AMF + 50% IF; and (T6) Ab + 50% IF; and (7) AMF + Ab + 50% IF. Four replicates were performed for each treatment, with a total of 28 blocks.

Seed selection

The selected maize seeds were the hybrid KS E-103 because of its yield potential and the adaptation area assessed as reliable and endorsed for the State of Veracruz (King Seeds, 20161). Subsequently, the seeds were moistened, introduced in plastic bags, and then left to rest for 24 h before sowing.

Seed inoculation

Seed inoculation was performed with the mycorrhizal consortium provided by the Beneficial Organism Laboratory (LOB for Laboratorio de Organismos Benéficos) of the FCA-UV, Campus Xalapa in 2015; the inoculum was composed by the AMF strains taxonomically identified as Acaulospora morrowiae, A. scrobiculata, A. spinosa, Funneliformis geosporum, F. mosseae, Gigaspora decipiens, G. rosea, Glomus aggregatum, Gl. macrocarpum, Cetraspora pellucida and Claroideoglomus etunicatum with a radicle colonization percentage of 85% and the rhizobacteria A. brasilense with colony forming units (CFU) of 500 million·g-1 of dry inoculant.

With the purpose of improving impregnating the previously washed maize seeds with the mycorrhized inoculant, an adherent based on carboxymethylcellulose sodium salt (CAS number 9004-32-4) was applied at a ratio of 25 mL bag-1. Subsequently, the inoculant was applied to the bags containing ca. 1250 seeds with an approximate weight of 520 g bag-1. After that, the inoculant (20 g·bag-1) and seeds were mixed manually.

The rhizobacterial inoculation and impregnation to the same number of seeds with A. brasilense (15 g bag‑1) was performed in the same manner as that followed with the mycorrhizal consortium.

Sowing inoculated seeds

The inoculated seeds were sown on a surface of 693 m2. Previous to sowing, Glyfos( (FMC, Philadelphia, PA, USA) 36% (glyphosate, 1.5 L ha‑1) was applied because it is a wide-spectrum, non-selective, and systemic herbicide. Nonetheless, due to the existing meteorological conditions, it was not possible to perform mechanical practices to prepare the land, which is why zero tillage was used. The size of the blocks for each replicate was 24.75 m2.

Manual sowing was performed by handspike, making holes with a long-handle narrow spade and depositing two seeds per hole. Sowing distance was 80 cm between furrows, 30 cm between plants, and 80 cm between blocks, which were labeled with a different color for each treatment.

Cultural work in the experimental site

Land clearing was made by hand, using machete, file, rake, mattock, and a wheel-barrow; during the cultivation stage progression, auxiliary flood irrigation (by gravity) was performed weekly with the purpose of having sufficient humidity for the efficient use of the inorganic fertilizer applied.

Initial fertilization was performed with Simple Superphosphate Calcium (00-20-00) at a ratio of 15 g plant-1 at 20 days after sowing (DAS); the second one was produced with Simple Superphosphate (00‑20‑00) and urea (46-00-00) at a ratio of 5 and 20 g plant-1, respectively, at 35 DAS.

Additionally, methyl parathion (Foley 2%, 5 mL L‑1) was applied to leaves with a 20 L capacity manual sprayer due to the attack of the fall armyworm during the different stages of the crop development.

Sampling collection and management to determine radicle colonization

Mycorrhizal colonization. The rootlets collected at 60 DAS were fixed in formaldehyde; acetic acid; ethanol (FAA, 10:5:85), and for clearing and staining, the methodology proposed by Phillips and Hayman (1970) was used; mycorrhizal colonization was quantified within the root, according to the on-site fungal structure technique described by Giovannetti and Mosse (1980).

Colony Forming Units (CFU) quantification. To obtain an optimum growth of Azospirillum, the isolates were purified and tripled in NFB (nitrogen-free broth) substrate, using malate as carbon source (Dobereiner et al., 1976). Afterwards, soil and root compound samples were taken from each block (10 g), which were diluted in series (based on 10) and homogenized with circular movements in 90 mL of sterile water contained in a 250-mL Erlenmeyer flask up to 1 ( 10-8.

Subsequently, 0.1 mL of decimal dilution was taken from each sample and placed in the center of a sterile Petri box with solid-specific Red Congo culture medium (Rodríguez, 1982), distributed with a Drigalski spatula (NEOLAB(, Andover, MA, USA). The viable cell count per sowing surface was performed with a colony counter (Darkfield Quebec, Optical American Company, Fischer Scientific Company, Ottawa, Ontario, CAN) and transformed to CFU g-1 of dry soil.

The variables assessed were plant height (cm); flag leaf length and width (cm); stem diameter (mm); and mycorrhizal colonization percentage at 60 DAS; CFU (CFU mL-1) (Madigan et al., 2015), and total maize crop production (kg) at 90 DAS.

The results obtained were processed by means of one-way analysis of variance (ANOVA) and Fisher’s multiple comparison of mean (LSD (P ≤ 0.05) was used. The statistical analyses were carried out with the computer program Statistica v. 9.1 for Windows (StatSoft, Inc., 2010).

Results and Discussion

The statistical analysis showed significant differences among treatments for the variables assessed (Fisher’s LSD, P ≤ 0.05). For plant height the dominant treatment was AMF + Ab + 50% IF after confirming notable differences in almost all the treatments (Table 1), with the exception of Ab + 50% IF because A. brasilense is a rhizobacteria that specializes in fixing atmospheric nitrogen. In this manner, it has a bearing on light energy capture in the photosynthetic cells and intensification of the maize plant differentiation and growth activity (Naresh and Singh, 2001), above all, if the intention is to reduce the dose of the chemical fertilizers required by these Poaceae to produce more commercial and profitable crop yield (González et al., 2011; García-Olivares et al., 2012).

Table 1: Response variable of maize crop to bio-inoculation and chemical fertilization reduction in field, La Bandera, Municipality of Actopan, Veracruz, Mexico. 

Treatments

Variables assessed

Height

Flag leaf length

Flag leaf width

Stem diameter

------------ cm ------------

mm

TM

86.52c

40.29d

6.10c

6.10c

AMF

112.50b

49.70c

6.87b

6.87b

AB

112.57b

45.16c

7.02b

7.02b

AMF+AB

115.34b

58.96b

7.32ab

7.32ab

AMF+50%IF

123.59b

61.31b

7.66a

7.66a

AB+50%IF

144.90a

47.14c

7.03b

7.03b

AMF+AB+50%IF

151.93a

70.68a

7.79

7.79a

CV (%)

29.58

25.97

16.48

26.65

SE

2.39

0.95

0.07

0.03

SD

3.81

1.85

1.17

0.46

TM = traditional management (control); AMF = arbuscular mycorrhizal fungi; Ab = Azospirillum brasilense; IF = inorganic fertilizer; CV = coefficient variation; SE = standard error; SD = deviation standard. Columns with the same letter are statistically equal among them (Fisher’s Least Significant Difference [LSD] P ≤ 0.05).

Nonetheless, Rojas and Fernández (2011) confirmed that the use of microbial inoculants (Gl. intraradices and A. brasilense) allowed reducing up to 50% of mineral fertilization to the soil and with it optimizing financial-agro-productive feasibility of maize crop. Furthermore, phytostimulation is feasible with Pseudomonas friendly to the natural environment and useful in modern biological processes that promote the sequence of the crop stages (Couillerot et al., 2013).

For stem diameter the best treatment was Ab + 50% IF as revealed by the statistical significance (Fisher’s LSD, P ≤ 0.05) test when compared with the rest of the treatments (Table 1), which agrees with Zarazúa et al. (2009) who reported that maize plant inoculation with A. brasilense conferred plant development, and above all, increased in stem length and weight. However, Xiu (20142) and Montejo-Martínez et al. (2015; 2018) reported satisfactory increments in stem diameter when plants were inoculated with AMF, A. brasilense, and the reduced dose (50%) of the fertilizer.

For flag leaf length and width, the best treatment was AMF + Ab + 50% IF with increments of 75.43 and 27.68%, with respect to control-plants (Table 1), which could have been related precisely to the mycorrhizal inoculant, rhizobacterium (A. brasilense), and the reduced dose of the inorganic fertilizer (50%) since they tend to provide their benefits on plant growth.

In this manner, it is worth to point out that the AMF produce plant growth promoter phytohormones (Díaz et al., 2014) and A. brasilense acts upon the host metabolism, which implies a significant increase in root, stem, and leaf formation (Mendoza-Herrera and Cruz-Hernández, 2012). This last variable is of considerable importance in cereals, such as wheat, barley, oats (Gutiérrez-Rodríguez et al., 2015), and maize (Tanaka et al., 1972) crop because the flag leaf develops a fundamental role in photo-assimilated translocation toward the fruit in development (Sánchez-Mendoza et al., 2017); consequently, the relationship among crop emission, size, and development is very close, as Hernández et al. (2015) recorded for this Gramineae (today Poaceae) in terms of leaf index and absolute growth and production rate.

These results agree with that described by Aguirre-Medina et al. (2011) who found that by incorporating these microorganisms simultaneously, not only flag leaf dimension increased but also stem height and diameter, and thus yield.

In fact, specialized literature not only confirms and generalizes that plant growth, physiology or phenology may be stimulated by a symbiotic relationship between AMF but also these rhizobacteria within the rhizosphere (Ruíz-Sánchez et al., 2011) increases and maintains soil fertility (Okonji et al., 2018).

On the other hand, although maize stem diameter in field was greater in the treatments where the reduced (50%) IF fertilizer dose was used, the treatment Ab + 50% IF was the best of all when the statistical significance (Fisher’s LSD, P ≤ 0.05) test revealed that it went beyond the control group with more than 44% (ca. 44.73%) (Table 1).

These results agree with those of the experimental valuation detailed in advanced by Zarazúa et al. (2009), Xiu (20144) and Montejo-Martínez et al. (2015; 2018).

In comparison with the different treatments and the control group, the AMF + Ab treatment recorded a significant statistical difference in mycorrhizal colonization percentage (70.83%, Fischer’s LSD, P ≤ 0.05) - behavior that agrees with that reported by Patil et al. (2013) and Ramakrishnan and Bhuvaneswari (2014) when they confirmed that dual inoculation with these microorganisms favored radicle colonization in their hosts.

Furthermore, it is worth to point out the following aspects: (1) such tendency prevailed even when the reduced fertilization (AMF + Ab + 50% IF) caused a lower root mycorrhization (54.63%), which diverse research studies on mycorrhizal symbiosis behavior and additional supply of mineral nutrients have described in detail (Cruz et al., 2014; Castillo et al., 2016); and (2) in the traditional management (TM, control group without inoculation) the roots showed a radicle colonization of 7.83% coming from the native mycorrhization response that even went beyond the one detected in the treatment Ab (2.65%) (Figure 1).

TM = traditional management of the producer, control group; AMF (Arbuscular mycorrhizal fungi) = inoculation with the mycorrhizal consortium; Ab = inoculation with Azospirillum brasilense; AMF + Ab = inoculation with the mycorrhizal consortium and Azospirillum brasilense; Ab + 50% IF = inoculation with Azospirillum brasilense and reduced dose of the inorganic fertilizer; AMF + 50% IF = inoculation with the mycorrhizal consortium and reduced dose of the inorganic fertilizer; AMF+Ab+50% IF = inoculation with the mycorrhizal consortium and Azospirillum brasilense plus reduced dose of inorganic fertilizer. Values with different letter in the same column denote significant difference (Fisher’s Least Significant Difference [LSD], P ≤ 0.05). Vertical lines are the standard error (±).

Figure 1: Mycorrhizal colonization in maize (Zea mays) roots at 60 days after sowing (DDS).  

With respect to the CFU variable, the best dilution was 10-6 g-1 of dry soil since the treatments Ab + 50% IF and AMF + Ab + 50% IF, 198 and 142 CFU were quantified, respectively, in contrast with the AMF + Ab (CFU 17) and Ab (CFU 7) treatments.

Such results, add up to the evidence made known by Castañeda-Saucedo et al. (2013) after they applied different doses of A. brasilense plus chemical fertilization, and denoted that the number of colonies increased compared with the non-fertilized treatments because the nitrogen quantity in soil contributed to the development and survival of the rhizobacteria. On the other hand, despite the content of this element was low where the experiment was established, González et al. (2011) pointed out that A. brasilense was capable of compensating the deficiency and thus affecting its availability positively for the plant.

In grain weight, Ab + 50% IF (74.21%) and AMF + 50% F (47.42%) were higher when compared with the rest of the treatments (Fisher’s LSD, P ≤ 0.05) (Figure 2); these results agree with those reported by García-Olivares et al. (2012) and Babaogli et al. (2012) who inoculated maize seed with this rhizobacteria and increased crop production and consequently yield (Oliveira et al., 2018).

TM = traditional management of the producer, control group; AMF (Arbuscular mycorrhizal fungi) = inoculation with the mycorrhizal consortium; Ab = inoculation with Azospirillum brasilense; AMF + Ab = inoculation with the mycorrhizal consortium and Azospirillum brasilense; Ab + 50% IF = inoculation with Azospirillum brasilense and reduced dose of the inorganic fertilizer; AMF + 50% IF = inoculation with the mycorrhizal consortium and reduced dose of the inorganic fertilizer; AMF+Ab+50% IF = inoculation with the mycorrhizal consortium and Azospirillum brasilense plus reduced dose of inorganic fertilizer. Values with different letter in the same column denote significant difference (Fisher’s Least Significant Difference [LSD], P ≤ 0.05). Vertical lines are the standard error (±).

Figure 2: Grain weight (kg) in maize (Zea mays) plants at 90 days after sowing (DDS).  

With respect to sufficiency and limited phosphorous availability (P) in soils where this experiment was established, different field studies have proven how beneficial the mycorrhizal association is in crops of economic importance, above all because the agronomic efficiency of P and biomass production with agricultural value increases (Deguchi et al., 2007, 2012), without excluding the positive relationship influenced by the microbial inoculants in Z. mays (Díaz-López et al., 2014; Battini et al., 2017).

Likewise and despite the deficient soil nitrogen content, the rhizobacteria (A. brasilense) and rhizosphere microbiota not only may contribute to P solubilization but also N fixation (Cruz and Ishii, 2012; Rouphael et al., 2015) with the supply of essential nutrients to corn, reducing the quantity of chemical fertilizers that is used to obtain the most satisfactory yields required in plant growth and development (Mazen et al., 2018).

Similarly, the critical or very low levels of organic matter in soil (1.1%) may have influenced the scarce and even null root colonization where inoculation was not performed since such soil condition tends to limit the functionality of the symbionts (AMF) and rhizobacteria - as A. brasilense - just as Peña-Venegas et al. (2007) have mentioned.

Based on the results of this study, the proposed methodology implemented by the dual application of these microorganisms with reduced inorganic fertilization could be a technically feasible alternative to be promoted among the producers, not only because it is eco-friendly but also simple and inexpensive, reducing the use of agrochemicals and high production costs. Furthermore, another alternative that could be viable is decreasing the very harmful environmental threats that the excessive use of chemical supplies - pesticides and synthetic fertilizers - causes, of which those that stand out are soil compaction and degradation (Massah and Azadegan, 2016), fertility decline (Timsina, 2018), pollution of underground water, air, and soil (Pérez-Lucas et al., 2018; Zhang et al., 2018) and its acidification (Goulding, 2016) without excluding damage and harm caused to human health (Kumari et al., 2014; Silveira-Gramont et al., 2018).

Lastly, the AMF and A. brasilense frequently have a synergic interaction when applied jointly; good results have been reported though when they are also applied separately and with a reduced dose of inorganic fertilization.

Conclusion

The main treatment for the majority of the variables assessed in this research study was AMF + Ab + 50% IF, which represented a potential to favor growth and development of maize plants in field conditions. On the other hand, in crop production the Ab + 50% IF treatment suggested the possibility of optimizing the relationship cost-benefit when the quantity of chemical fertilizers was reduced, as necessary, to increase production.

Acknowledgments

The authors are grateful to Teresita de Jesús May Mora for the support offered with equipment and facilities during the soil sampling analyses in the Soil Laboratory of the FCA-UV; to Diana Fischer for translation-edition services provided.

REFERENCES

Aguado-Santacruz, G. A., Q. Rascón-Cruz y A. Luna-Bulbarela. 2012. Impacto económico y ambiental del empleo de fertilizantes químicos. pp: 1-22. In: G. A. Aguado-Santacruz (ed.). Introducción al uso y manejo de los biofertilizantes en la agricultura. CIRCE-INIFAP. Celaya, Guanajuato, México. ISBN: 978-607-425-807-3. [ Links ]

Aguirre-Medina, J. F., D. M. Moroyoqui-Ovilla, A. Mendoza-López, J. Cadena-Iñiguez, C. H. Avendaño-Arrazate y J. F. Aguirre-Cadena. 2011. Hongo endomicorrízico y bacteria fijadora de nitrógeno inoculadas a Coffea arabica en vivero. Agron. Mesoam. 22: 71-80. [ Links ]

Alvarado T., R., E. Aceves R., J. D. Guerrero R., J. I. Olvera H., Á. Bustamante G., S. Vargas L. y J. H. Hernández S. 2018. Respuesta de variedades de maíz (Zea mays L.) a diferentes fuentes de fertilización en el Valle de Puebla. Terra Latinoamericana 36: 49-59. doi: https://doi.org/10.28940/terra.v36i1.309. [ Links ]

Anozie, H. I. and J. A. Orluchukwu. 2018. Response of three varieties of maize (Zea mays) to arbuscular mycorrhizal fungi (Gigaspora gigantea) in the Humid Tropics. Int. J. Agric. Earth Sci. 4: 30-36. [ Links ]

Apeh, C. C. 2018. Farmers’ perception of the health effects of agrochemicals in southeast Nigeria. J. Health Pollut. 8: 180901. doi: https://doi.org/10.5696/2156-9614-8.19.180901. [ Links ]

Babaogli, F., F. R. Khoeai, and Y. Mehrdad. 2012. Effect of biological fertilizer on yield and yield components of corn (Zea mays) CV. S.C. 504 in drought condition. J. Appl. Environ. Biol. Sci. 2: 117-122. [ Links ]

Battini, F., M. Grønlund, M. Agnolucci, M. Giovannetti, and I. Jakobsen. 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci. Repor. 7: 4686. doi: https://doi.org/10.1038/s41598-017-04959-0. [ Links ]

Brito, O. D. C., I. Hernandes, J. C. A. Ferreira, M. R. Cardoso, O. Alberton, and C. R. Dias-Arieira. 2018. Association between arbuscular mycorrhizal fungi and Pratylenchus brachyurus in maize crop. Chil. J. Agric. Res. 78: 521-527. doi: https://doi.org/10.4067/S0718-58392018000400521. [ Links ]

Brusamarello-Santos, L. C., F. Gillard, L. Brulé, I. Quilleré, B. Gourion, P. Ratet, E. Maltempi de Souza, P. J. Lea, and B. Hirel. 2017. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. Plos One 12: e0174576. doi: https://doi.org/10.1371/journal.pone.0174576. [ Links ]

Cano, M. A. 2011. A review of interaction of beneficial microorganisms in plants: Mycorrhizae, Trichoderma spp. and Pseudomonas spp. Rev. U.D.C.A. Act. Divulg. Cient. 14: 15-31. [ Links ]

Castañeda-Saucedo, M. C., G. Gómez-González, E. Tapia-Campos, O. Núñez M., J. S. Barajas y M. L. Rujano S. 2013. Efecto de Azospirillum brasilense y fertilización química sobre el crecimiento, desarrollo, rendimiento y calidad de fruto de fresa (Fragaria x ananassa Duch). Interciencia 38: 737-744. [ Links ]

Castillo, C., D. Morales, F. Fuentealba y V. San Martín. 2016. Colonización temprana de hongos micorrícicos arbusculares en trigo con aplicación de productos naturales en un Andisol de La Araucanía. Idesia 34: 63-68. doi: http://dx.doi.org/10.4067/S0718-34292016005000009. [ Links ]

CCMSS (Consejo Civil Mexicano para la Silvicultura Sostenible). 2019. Recomendación de la CNDH, primer paso para frenar el uso de agroquímicos altamente peligrosos que ponen en riesgo los medios de vida de comunidades campesinas e indígenas. http://www.ccmss.org.mx/recomendacion-de-la-cndh-primer-paso-para-frenar-uso-de-agroquimicos-altamente-peligrosos-que-ponen-en-riesgo-los-medios-de-vida-de-comunidades-campesinas-e-indigenas/ (Consulta: marzo 8, 2019). [ Links ]

CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). 2016. Calidad de grano para técnicos postcosecha. Laboratorio de Calidad Nutricional de Maíz. CIMMYT. Texcoco, Edo. de México, México. [ Links ]

Couillerot, O., A. Ramírez-Trujillo, V. Walker, A. von Felten, J. Jansa, M. Maurhofer, G. Défago, C. Prigent-Combaret, G. Comte, J. Caballero-Mellado, and Y. Moënne-Loccoz. 2013. Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl. Microbiol. Biotechnol. 97: 4639-4649. doi: http://dx.doi.org/10.1007/s00253-012-4249-z. [ Links ]

Cruz H., Y., M. Garcia R., Y. León G. y Y. Acosta A. 2014. Influencia de la aplicación de micorrizas arbusculares y la reducción del fertilizante mineral en plántulas de tabaco. Cult. Trop. 35: 21‑24. [ Links ]

Cruz, A. F. and T. Ishii. 2012. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol. Open 1: 52-57. doi: http://dx.doi.org/10.1242/bio.2011014. [ Links ]

D’Angioli, A. M., R. A. Gorne Viani, H. Lambers, A. C. H. Frankland Sawaya, and R. Silva Oliveira. 2017. Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant Soil 410: 499-507. doi: http://dx.doi.org/10.1007/s11104-016-3044-5. [ Links ]

Deguchi, S., Y. Shimazaki, S. Uozumi, K. Tawaraya, H. Kawamoto, and O. Tanaka. 2007. White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 291: 291-299. doi: http://dx.doi.org/10.1007/s11104-007-9194-8. [ Links ]

Deguchi, S. , S. Uozumi , E. Touno, M. Kaneko, andK. Tawaraya . 2012. Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Sci. Plant Nutr. 58: 169-172. (doi: https://doi.org/10.1080/00380768.2012.662697. [ Links ]

Díaz F. , A., I. Garza C., V. Pecina Q. y N. Montes G. 2008. Respuesta del sorgo a micorriza arbuscular y Azospirillum en estrés hídrico. Rev. Fitotec. Mex. 31: 35-42. [ Links ]

Díaz F. , A., H. M. Cortinas E., J. Vadez G. y M. Á. Peña del Río. 2014. Micorriza arbuscular como alternativa en la producción de sorgo en Tamaulipas, México. Invest. Cienc. 62: 56-68. [ Links ]

Díaz-López, E., J. M. Loeza-Corte, I. Brenda-Hernández, J. M. Campos P., I. J. Orlando-Guerrero y G. Salgado-Benítez. 2014. Eficiencia agronómica de fósforo, biomasa y rendimiento de dos variedades nativas de maíz y un híbrido en el centro de México. Phyton 83: 171-178. [ Links ]

Dobereiner, J., I. E. Marriel, and M. Nery. 1976. Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol. 22: 1464-1473. doi: https://doi.org/10.1139/m76‑217. [ Links ]

García, E. 1987. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, UNAM. México, D. F. [ Links ]

García-Olivares, J. G., A. Mendoza-Herrera y N. Mayek-Pérez. 2012. Efecto de Azospirillum brasilense en el rendimiento del maíz en el norte de Tamaulipas, México. Univ. Cienc. 28: 79‑84. [ Links ]

Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84: 489-500. doi: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x. [ Links ]

González H., A., D. J. Pérez L., O. Franco M., A. Balbuena M., F. Gutiérrez R. y H. Romero S. 2011. Respuesta de tres cultivares de maíz a la inoculación con Azospirillum brasilense bajo cuatro diferentes dosis de nitrógeno. Cienc. Ergo Sum 18: 51-58. [ Links ]

Goulding, K. W. T. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 32: 390-399. doi: https://doi.org/10.1111/sum.12270. [ Links ]

Gutiérrez-Rodríguez, M., M. P. Reynolds, J. A. Escalante E. y A. Larqué-Saavedra. 2015. Algunas consideraciones en la relación entre fotosíntesis y el rendimiento de grano en trigo. Cienc. Ergo Sum 12: 149-154. [ Links ]

Hernández C., N., F. Soto C. y R. Plana Ll. 2015. Comportamiento del crecimiento y rendimiento del cultivo del trigo (Triticum aestivum L.) en tres fechas de siembra. Cult. Trop. 36: 86-92. [ Links ]

Kumar, R., N. Kumawat, and Y. K. Sahu. 2017. Role of biofertilizers in agriculture. Popular Kheti 5: 63-66. [ Links ]

Kumari, K. A., K. N. R. Kumar, and CH. N. Rao. 2014. Adverse effects of chemical fertilizers and pesticides on human health and environment. J. Chem. Pharmac. Sci. (Special Issue) 3: 150-151. [ Links ]

Madigan, M. T., J. M. Martinko, K. S. Bender, D. H. Buckley y D. A. Stahl. 2015. Brock: Biología de los microorganismos. Pearson. Madrid, España. ISBN: 9788490352809. [ Links ]

Massah, J. and B. Azadegan. 2016. Effect of chemical fertilizers on soil compaction and degradation. Ama Agric. Mechanizat. Asia Afr. Latin. Am. 47: 44-50. [ Links ]

Mazen, M. B. H., T. Ramadan, N. A. Nafady, A. Zaghlol, and S. H. A. Hasan. 2018. Comparative study on the effect of chemical fertilizers, bio-fertilizers and arbuscular mycorrhizal fungi on maize growth. Biol. For. An Int. J. 10: 182-194. [ Links ]

Mendoza-Herrera, A. y M. A. Cruz-Hernández. 2012. Empleo de Azospirillum como biofertilizante. pp. 171-194. In: G. A. Aguado-Santacruz (ed.). Introducción al uso y manejo de los biofertilizantes en la agricultura. CIRCE-INIFAP. Celaya, Guanajuato, México. ISBN: 978-607-425-807-3. [ Links ]

Montejo-Martínez, D., F. Casanova-Lugo, I. Oros-Ortega y K. A. Xiu. 2015. Respuesta foliar y radicular del maíz a la fertilización biológica y química en un suelo luvisol. pp. s/n. In: J. A. Villanueva J. y R. Jarquín Gálvez (coord.). Agricultura sostenible. Armonía entre el hombre y la naturaleza. Universidad Autónoma de Aguascalientes. Aguascalientes, México. [ Links ]

Montejo-Martínez, D. , F. Casanova-Lugo , M. García-Gómez, I. Oros-Ortega , V. Díaz-Echeverría y E. R. Morales-Maldonado. 2018. Respuesta foliar y radical del maíz a la fertilización biológica-química en un suelo Luvisol. Agron. Mesoam. 29: 325-341. doi: http://dx.doi.org/10.15517/ma.v29i2.29511. [ Links ]

Naresh Kumar, S. and C. P. Singh. 2001. Growth analysis of maize during long and short duration crop seasons: Influence of nitrogen source and dose. Ind. J. Agric. Res. 35: 13-18. [ Links ]

Okonji, C. J., O. S. Sakariyawo, K. A. Okeleye, A. G. Osunbiyi, and E. O. Ajayi. 2018. Effects of arbuscular mycorrhizal fungal inoculation on soil properties and yield of selected rice varieties. J. Agric. Sci. 63: 153-170. doi: http://dx.doi.org/10.2298/JAS1802153O. [ Links ]

Okur, N. 2018. A review: Bio-fertilizers- power of beneficial microorganisms in soils. Biomed. J. Sci. Tech. Res. 4. doi: 10.26717/BJSTR.2018.04.001076. [ Links ]

Oliveira, I. J., J. R. A. Fontes, B. F. F. Pereira, and A. W. Muniz. 2018. Inoculation with Azospirillum brasilense increases maize yield. Chem. Biol. Technol. Agric. 5: 6. doi: https://doi.org/10.1186/s40538-018-0118-z. [ Links ]

Patil, G. B., H. C. Lakshman, R. M. Mirdhe, and B. S. Agadi. 2013. Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Eleusine coracana Gaertn. (Finger millet). As. J. Plant Sci. Res. 3: 26‑30. [ Links ]

Peña-Venegas, C. P., G. I. Cardona, J. H. Arguelles y A. L. Arcos. 2007. Micorrizas arbusculares del sur de la amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Acta Amaz. 37: 327-336. doi: http://dx.doi.org/10.1590/S0044-59672007000300003. [ Links ]

Pérez de Luque, A., S. Tille, I. Jhonson, D. Pascual-Pardo, J. Ton, and D. D. Cameron. 2017. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defenses against pathogens. Sci. Rep. 7: 16409. doi: https://doi.org/10.1038/s41598-017-16697-4. [ Links ]

Pérez-Lucas, G., N. Vela, A. El Aatik, and S. Navarro. 2018. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. pp. 1-27. In: W. Manyilizu (ed.). Pesticides, Anthropogenic Activities and the Health of our Environment. IntechOpen. doi: https://doi.org/10.5772/intechopen.82418. [ Links ]

Phillips, J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161. doi: https://doi.org/10.1016/S0007-1536(70)80110-3. [ Links ]

Portugal, J. R., O. Arf, A. R. Peres, D. C. Gitti, R. A. F. Rodrigues, N. F. S. Garcia, and L. M. Garé. 2016. Azospirillum brasilense promotes increment in corn production. Afr. J. Agric. Res. 11: 1688-1698. doi: https://doi.org/10.5897/AJAR2015.10723. [ Links ]

Ramakrishnan, K. and G. Bhuvaneswari. 2014. Effect of inoculation of AM fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn. (Finger millet). Int. Lett. Nat. Sci. 13: 59-69. doi: https://doi.org/10.18052/www.scipress.com/ILNS.13.59. [ Links ]

Rodríguez C., E. A. 1982. Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 44: 990-991. [ Links ]

Rojas M., I. y R. Fernández S. 2011. Efecto del Azospirillum brasilense y micorriza INIFAP en le rendimiento de maíz en el estado de Tlaxcala. INIFAP/SAGARPA, México. (Desplegable para productores no. 12). INIFAP. Sitio Experimental Tlaxcala. Tlaxcala, México. [ Links ]

Rouphael, Y., P. Franken, C. Schneider, D. Schwarz, M. Giovannetti , M. Agnolucci , S. Pascale, P. Bonini, and G. Colla. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196: 91-108. doi. https://doi.org/10.1016/j.scienta.2015.09.002. [ Links ]

Ruíz-Sánchez, M., E. Armada, Y. Muñoz, I. E. García de Salamone, R. Aroca, J. M. Ruíz-Lozano, and R. Azcón. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 168: 1031-1037. doi: https://doi.org/10.1016/j.jplph.2010.12.019. [ Links ]

SAGARPA-SIAP (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación-Servicio de Información Agroalimentaria y Pesquera). 2018. Atlas agroalimentario 2012-2018. SIAP, México. [ Links ]

Sánchez-Mendoza, S. M., J. A. S. Escalante-Estrada y M. T. Rodríguez-González. 2017. Área y ángulo foliar, coeficiente de extinción de luz y su relación con la biomasa y rendimiento en genotipos de maíz. pp. 1-15. In: F. Pérez, E. Figueroa, L. Godinez y R. García (eds.). Ciencias de la economía y agronomía. Handbook T-II. Universidad Autónoma Chapingo. Texcoco, México. ISBN: 978-607-8534-33-3. [ Links ]

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). 2002. Norma Oficial Mexicana NOM-021-SEMARNAT-2000 (antes NOM-021-RECNAT- 2000) que establece las especificaciones de fertilidad, salinidad y clasificación de suelos; Estudio, muestreo y análisis. México: Diario Oficial de la Federación, 31 diciembre de 2002. México, D.F. [ Links ]

SIAP (Servicio de Información Agroalimentaria y Pesquera). 2018. Avance de siembras y cosechas; Resumen nacional por estado: Riego+Temporal, Año agrícola 2018, Maíz grano. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalCultivo.do . (Consulta: marzo 8, 2019). [ Links ]

Silveira-Gramont, M. I., M. L. Aldana-Madrid, J. Piri-Santana, A. I. Valenzuela-Quintanar, G. Jasa-Silveira y G. Rodríguez-Olibarria. 2018. Plaguicidas agrícolas: Un marco de referencia para evaluar riesgos a la salud en comunidades rurales en el estado de Sonora. Rev. Int. Contam. Amb. 34: 7-21. doi: http://dx.doi.org/10.20937/rica.2018.34.01.01. [ Links ]

StatSoft Inc. 2010. STATISTICA version 9.1 for Windows. Stat Soft Inc. (http://www.statsoft.com). Tulsa, OK, USA. [ Links ]

Tanaka, A., J. Yamaguchi, P. Goldsworthy, and D. Bork. 1972. Dry matter production, yield components and grain yield of the maize plant. J. Facult. Agric. Hokkaido Univ. 57: 71-132. [ Links ]

Timsina, J. 2018. Can organic sources of nutrients increase crop yield to meet global food demand? Agronomy 8: 214. doi: https://doi.org/10.3390/agronomy8100214. [ Links ]

Tomer, S., D. C. Suyal, and R. Goel. 2016. Biofertilizers: A timely approach for sustainable agriculture. pp. 375-395. In: D. K. Choundary, A. Varma, and N. Tuteja (eds.). Plant-microbe interactions: An approach to sustainable agriculture. Springer. Singapore. doi: https://doi.org/10.1007/978-981-10-2854-0_17. [ Links ]

Uribe V. , G. y R. Dzib E. 2006. Micorriza arbuscular (Glomus intraradices), Azospirillum brasilense y brassinoesteroide en la producción de maíz en suelo luvisol. Agric. Téc. Méx. 32: 67-76. [ Links ]

Uribe V. , G., J. Petit A. y R. Dzib E. 2007. Respuesta del cultivo de maíz a la aplicación de biofertilizantes en el sistema roza, tumba y quema en suelo alfisol (chac-lu’um, nomenclatura maya), en Yucatán, México. Agric. Andina 13: 3-18. [ Links ]

Wang, X.-X., X. Wang, Y. Sun, Y. Cheng, S. Liu, X. Chen, G. Feng, and T. W. Kuyper. 2018. Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil. Front. Microbiol. 9: 418. doi: https://doi.org/10.3389/fmicb.2018.00418. [ Links ]

Xu, H., Y. Lu, and S. Tong. 2018. Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emir. J. Food Agric. 30: 199-204. doi: https://doi.org/10.9755/ejfa.2018.v30.i3.1642. [ Links ]

Zambrano, J. A. y L. A. Díaz. 2015. Efecto de la inoculación de Azospirillum brasilense y Glomus sp. en Gmelina arborea durante su germinación y manejo en vivero. Univ. Sci. 13: 162-170. [ Links ]

Zarazúa A., E., A. Tiessen F., D. Padilla C. y C. Martínez M. 2009. La bacteria Azospirillum brasilense inoculada en plantas de maíz sometidas a estrés hídrico, propicia el aumento de tamaño del tallo, peso del fruto e induce cambios en los metabolismos de azúcares. Memorias del Programa Verano en la Ciencia 2009. Universidad Autónoma de Querétaro. https://www.uaq.mx/investigacion/difusion/veranos/memorias-2009/11VCRC_46/38_Zarazua_Arvizu.pdf (Consulta: marzo 15, 2019). [ Links ]

Zepeda-Jazo, I. 2018. Manejo sustentable de plagas agrícolas en México. Agric. Soc. Desarro. 15: 99-108. [ Links ]

Zhang, L., C. Yan, Q. Guo, J. Zhang, and J. Ruiz-Menjivar. 2018. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int. J. Low-Carbon Technol. 13: 338-352. doi: https://doi.org/10.1093/ijlct/cty039). [ Links ]

Zulueta-Rodríguez, R., L. G. Hernández-Montiel, B. Murillo-Amador, M. V. Córdoba-Matson, L. Lara, and I. Alemán-Chávez. 2015. Survival and growth of Jacaratia mexicana seedlings inoculated with arbuscular mycorrhizal fungi in a tropical dry forest. Madera Bosques 21: 161-167. [ Links ]

1King Seeds. 2016. Maíces híbridos; El principio de un cultivo exitoso. King Seeds Cía. SA de CV. Guadalajara, Jal., México.

2Xiu, K. A. 2014. Evaluación del crecimiento del maíz VS-536 inoculado con microorganismos (Micorrizas y Azospirillum), y con la adición de fertilizantes químicos en un suelo Luvisol. Informe Técnico de Residencia Profesional, SEP/ITZM. Quintana Roo, México.

Recommended citation:

Zulueta-Rodríguez, R., F. C. Gómez-Merino, I. Alemán-Chávez, M. C. Núñez-Camargo y L. Lara-Capistrán. 2020. Respuesta del cultivo de maíz a la bio-inoculación y fertilización química reducida en campo. Terra Latinoamericana Número Especial 38-3: 597-612. DOI: https://doi.org/10.28940/terra.v38i3.656

Received: October 14, 2019; Accepted: December 12, 2019

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons