SciELO - Scientific Electronic Library Online

 
vol.37 issue4Nutritional characteristics of maize cultivated with vermicompostResponse of tomato plants to diesel fuel, gasoline and benzene author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Terra Latinoamericana

On-line version ISSN 2395-8030Print version ISSN 0187-5779

Terra Latinoam vol.37 n.4 Chapingo Oct./Dec. 2019  Epub Mar 24, 2020

https://doi.org/10.28940/terra.v37i4.526 

Artículos Científicos

Site-specific fertilization approach increased productivity of rainfed ‘Ataúlfo’ mango

El enfoque de fertilización de sitio específico incrementó la productividad del mango ‘Ataúlfo’

Samuel Salazar-García1   
http://orcid.org/0000-0001-6279-158X

Martha Elva Ibarra-Estrada2 
http://orcid.org/0000-0001-9711-0297

Edgardo Federico Hernández-Valdés3 
http://orcid.org/0000-0003-3151-6715

Raúl Medina-Torres4 
http://orcid.org/0000-0001-8981-2870

Luis Enrique Fregoso-Tirado1 
http://orcid.org/0000-0001-6900-0963

1 INIFAP, Campo Experimental Santiago Ixcuintla. Entronque carretera Internacional México-Nogales km 6. 63300 Santiago Ixcuintla, Nayarit, México.

2 Independent researcher. Santiago Ixcuintla, Nayarit, México.

3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas esq. Berlín s/n, Col. Viveros. 60190 Uruapan, Michoacán, México.

4 Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Carretera Tepic-Compostela km 9, Apdo. Postal 49. 63780 Xalisco, Nayarit, México.


SUMMARY:

There is considerable diversity in fertilization management of ‘Ataúlfo’ mango (Mangifera indica L.) in the state of Nayarit, Mexico, and there is no systematic information available in this regard. The aim of this research was to evaluate the medium-term effect (2010‑14) of the site-specific fertilization approach on fruit yield and size in ‘Ataúlfo’ mango grown under rainfed conditions (annual average summer rainfall 1300-1450 mm). Two commercial orchards at 8 × 8 m spacing, one each in San Blas and Compostela municipalities in Nayarit were chosen. Fertilization treatments were: 1) Normal dose, which considered tree nutrient demand, periods of maximum root growth, nutrients provided by the soil, leaf nutrient concentrations and fertilization efficiency; 2) High dose (1.5 times the normal dose); 3) Control, annual application of 3 kg per tree of 17-17-17 (N, P2O5, K2O). Soil and leaf samples were taken for nutrient analysis throughout the study. Treatments were randomly applied to 20 single tree-replicates at each orchard. For cumulative yield and fruit size a 2 × 3 factorial arrangement (orchards × treatments) was used. For leaf nutrient concentrations, the year and fertilization treatments effect was analyzed using 10 replicates per treatment. Means comparison was performed with the Waller-Duncan test (P ≤ 0.05). The Normal dose increased yield 38% as compared to the Control, as well as fruit size. The highest total fruit yield and C22 (196-220 g) and C20 (221-250 g), as well as the highest cost-benefit, were obtained with the Normal dose. This treatment consisted of applying per year and tree, depending on the orchard, 509-608 g N, 21-206 g P, 132-582 g K, 19-234 g Mg, 6.5-18 g Fe, 6-46 g Mn, 2-6 g Zn and 3-13 g B.

Index words: alternate bearing; fruit size; Mangifera indica L.; mineral nutrition

RESUMEN:

Existe una amplia heterogeneidad en el manejo de la fertilización del mango (Mangifera indica L.) en el estado de Nayarit, México y no se dispone de información sistemática al respecto. El objetivo de esta investigación fue evaluar el efecto a mediano plazo (2010-14) de la fertilización de sitio específico sobre el rendimiento y tamaño del fruto de mango ‘Ataúlfo’ cultivado en condiciones de temporal (sin riego; promedio anual de lluvia de verano 1300-1450 mm). El estudio se realizó en dos huertos comerciales establecidos en cuadro a 8 × 8 m en los municipios de San Blas y Compostela, Nayarit. Los tratamientos de fertilización anual fueron: 1) Dosis normal, que consideró la demanda y condición nutrimental del árbol, la aportación de nutrientes por el suelo y la eficiencia de la fertilización; 2) Dosis alta (1.5 veces la dosis Normal); 3) Testigo, una aplicación anual de 3 kg por árbol de 17-17-17 (N, P2O5, K2O). Se tomaron muestras de suelo y foliares para su análisis nutrimental. Para las variables rendimiento acumulado y tamaño de fruto se consideraron 20 repeticiones (árboles) por tratamiento y se utilizó un arreglo factorial 2 × 3 (huertos × tratamientos). Para la concentración nutrimental foliar, se analizó el efecto del año y los tratamientos de fertilización y se usaron 10 repeticiones por tratamiento y huerto. La comparación de medias se realizó con la prueba Waller-Duncan (P ≤ 0.05). La dosis Normal incrementó 38% el rendimiento respecto al Testigo, así como el tamaño de fruto; también reflejó la mayor producción total y de frutos tamaño C22 (196-220 g) y C20 (221-250 g), así como el mayor beneficio-costo. Este tratamiento consistió en aplicar por año y por árbol, según el huerto, de 509-608 g N, 21-206 g P, 132-582 g K, 19-234 g Mg, 6.5-18 g Fe, 6-46 g Mn, 2-6 g Zn and 3-13 g B.

Palabras clave: alternancia productiva; tamaño de fruto; Mangifera indica L.; nutrición mineral

INTRODUCTION

In order to ensure proper nutrient management in mango (Mangifera indica L.) production, the nutrients provided by the soil, the nutrient requirement of the tree for a given crop target, tree phenology, and the efficiency of fertilization and/or manuring, among other factors, must be considered (Salazar-García, 2002). This implies the development of fertilization programs for each orchard type, taking into account the mango cultivar as well as the characteristics of each production area and orchard management practices.

Low yield can be the result of wrong fertilizer practices. Shaaban and Shaaban (2012) assessed the nutritional status of nine mango cultivars in sandy soils (57-90% sand; pH > 8) and under flood irrigation system in the Giza governorate, Egypt. Leaf nutrient concentrations were in the sufficient range; however, Ca, Mn and Zn were severely deficient and mentioned as the yield limiting factors. In another Governorate (Minuf iya), the response of irrigated mature ‘Zebda’ mango tress planted al 7 × 7 m in a loamy sandy soil (85% sand) to four sources of potassium fertilization (feldspar, potassium carbonate, potassium citrate, and mono potassium phosphate) was evaluated. Yield and fruit quality improved with the potassium citrate at 1895 g tree-1 and potassium carbonate at 850 g tree-1 treatments (Taha et al., 2014).

Mango fertilization with NPK and other nutrients has provided mixed results. In Pakistan, Shakeel et al. (2001) obtained 61.2 kg tree-1 in mango cv. Anwar Ratoul fertilized with 1.5 kg N, 0.65 kg P and 0.62 kg K per tree. For ‘Nam Dok Mai’ in Thailand, 10.3 kg tree-1 (year 1) and 14.1 kg tree-1 (year 2) were obtained with 0.5 kg N, 0.17 kg P and 1.2 kg K (Suriyapananont, 1992). In China, the application of 400 g N, 54.5 g P, 265.6 g K, 40 g Mg and 80 g S per year per tree achieved a yield of 15.2 Mg ha-1 in ‘Zihuaman’ mango (Xiuchong et al., 2001). In India, 800 g N, 87.2 g P and 249 g K were applied to cv. Dashehari, obtaining 132 kg tree‑1 (Sharma et al., 2000). In Taiwan, the application of 360 g N, 239.8 g P and 540.3 g K in seven mango cultivars produced 26.9 kg tree-1 (Shu et al., 2000).

A comparison of mineral (230-0-300 and 230‑0‑0 g NPK tree-1) and organic (vermicompost, bokashi and chicken manure) at 5 and 10 Mg ha-1 fertilizers was conducted in the ‘Manila’, ‘Tommy Atkins’, and ‘Ataulfo’ mango cultivars spaced at 6 × 2.5 m, on in a slightly acid (pH 6.5) vertisol pelic soil in Veracruz, México. The results indicate that fertilizers did not influence tree trunk diameter, flowering nor yield although they overcome the non-fertilized control (Peralta-Antonio et al., 2014).

Mango fertilization in México is commonly based on the application of NPK, and varies with the mango cultivar and region. In the state of Jalisco, Ortega-Arreola et al. (1993) suggested fertilizing nine-year-old mango trees with 0.6 kg N, 0.1 kg P and 0.3 kg K per tree per year. In Campeche, Tucuch-Cahuich et al. (2005) recommended 1.4 kg N, 0.3 kg P and 1.2 kg K annually for ‘Tommy Atkins’ trees over 20 years old. In Colima, Prieto-Martínez (2005) suggested fertilizing trees ≥ 10 year-old of the cvs. Haden and Tommy Atkins with 1.0 kg N and 0.9 kg K per tree every year. In Guerrero, Noriega-Cantú et al. (2012) promoted fertilizing ‘Manila’ mango with N, P, K, Mg and B, with varying doses, depending on the type of soil.

In the state of Nayarit, México, the land with ‘Ataúlfo’ mango has increased in recent years. In 2004 there were 3403 ha, increasing to 11,879 ha in 2017, with an average yield of 11.7 Mg ha-1, which is low compared to that obtained in 2004 (15 Mg ha-1) (SIAP-SAGARPA, 2018). According to Pérez-Barraza et al. (2007), in Nayarit only 62% of mango growers fertilize their orchards and 78% of them use 3 to 4 kg tree-1 of 17-17-17 commercial mixture, per year.

The site-specific fertilization (SSF) approach allows increases in yield and fruit quality and reduces environmental pollution due to excessive application of fertilizers and/or organic materials (Salazar-García, 2002; Salazar-García et al., 2009; Salazar-García et al., 2014). One of the possible causes for the low yield of ‘Ataulfo’ mango in Nayarit is insufficient and/or unbalanced orchard fertilization, so the SSF approach can provide significant increases in fruit yield and quality on a short-term basis (Salazar-García et al., 2014; García-Martínez et al., 2015). The objective of this research was to evaluate the effect of the SSF approach on fruit yield and size of rainfed ‘Ataúlfo’ mango in Nayarit, Mexico.

MATERIALS AND METHODS

Plant Material

This research was conducted during 2009-2014 in two commercial rainfed (annual average summer rainfall 1300-1450 mm) ‘Ataúlfo’ mango orchards: “Las Palmas” in the Municipality of San Blas (21º 36’ 46.1” N, 105º 11’ 19.6” W; elevation 193 m), and “El Divisadero” in the Municipality of Compostela (21º 07’ 03.0” N, 105º 11’ 04.6” W; elevation 104 m). Mango trees were 11-year-old, established in an orchard frame 8 × 8 m, and grown in a subhumid warm climate (maximum and minimum annual average temperatures above 28 and 18 °C, respectively) (García, 1998). Soil in orchards were a Humic Acrisol in Las Palmas and a Haplic Feozem in El Divisadero (INEGI, 1999). At the beginning of the study, difference in tree vigor was verified by means of an analysis of variance. No significant differences between orchards or groups of trees comprising the treatments for height (5.8 to 6 m) or trunk cross-sectional area 20 cm above the graft site (609-688 cm2) were detected, so a completely randomized experimental design was used. In order to minimize the effect of initial tree crop load on subsequent harvests, in 2009, 60 trees of similar size and vigor that produced at least 80 kg tree-1 were selected throughout each orchard. Treatments were randomly assigned among the 60 trees in such a way that three groups of 20 individuals each were formed, and each group was assigned a different fertilization treatment.

Leaf and Soil Analysis

Before treatments, leaf sampling for nutrient analysis was carried out in February 2009, and every year in February 2011, 2012, and 2013. In each treatment, 10 trees were randomly selected for sampling, and from each one, 30 healthy, mature summer vegetative flush leaves (leaf blade + petiole), situated in basipetal positions 6 and 7 of non-fruiting terminal shoots were collected according to Salazar-García et al. (2011). Leaves were washed and dried in a digital forced-air oven (Thermo Scientific model WHO 180, Madison, WI, USA) at 70 °C, until constant weight. Subsequently, the samples were ground in a stainless steel mill (IKA Mod. MF 10 Wilmington, NC, USA) with a 40 caliber mesh and analyzed for N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, and B in Fertilab laboratory (Celaya, Guanajuato, México) which is accredited by The North American Proficiency Testing Program of the Soil Science Society of America.

In January 2010, before the application of fertilization treatments, soil sampling was performed at 0-30 cm depth. In each orchard, three trees were randomly selected per treatment and from each tree a sample composed of four sub-samples from the tree’s shaded area was taken. Another soil sampling was collected in May 2013, after the fertilizations of summer 2010, 2011 and 2012. The following characteristics were determined in the aforementioned laboratory: texture, pH (1:2 water), organic matter, inorganic N, P-Bray, K, Ca, Mg, S, Na, Fe, Cu, Mn, Zn, and B.

Based on the soil analysis results, the hydrated lime [Ca(OH)2] and/or calcium sulfate (gypsum; CaSO4) requirements were determined (Table 1). The criteria for establishing the appropriate amount of lime were soil acidity (pH ≤ 5.5), calcium saturation point, cation exchange capacity, bulk density, soil sampling depth, tree’s shaded area and exchangeable aluminum. For gypsum, the same criteria as those used for lime, differing only in soil acidity (pH ≥ 5.5).

Table 1: Fertilization treatments (g tree-1) applied to ‘Ataúlfo’ mango in “Las Palmas” and “El Divisadero” orchards. 

Source of fertilizer 2010 2011 2012 2013 Application month
Palmas Divisadero Palmas Divisadero Palmas Divisadero Palmas Divisadero
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
ANP - - - - 1158 1737 702 1053 1126 1689 1162 1743 947 1420 528 792 july & sept.
(NH4)2SO4 1063 1595 1068 1602 - - - - - - - - - - - july & sept.
TSP 463 695 954 1430 917 1375 329 494 221 331.5 202 303 72 108 126 190 july
KCl 279 419 464 695 648 972 1142 1713 272 408 493 739.5 258 386 273 409 july & sept.
Ca(OH)2 - - 2668 2670 - - 6578 9867 - - 7266 - 5318 5318 4590 4590 june
CaSO4 2952 4428 6069 10668 1042 1563 - - - - - - - - - - june
MgSO4 118 117 1376 2064 128 192 152 229 128 192 241 361.5 133 200 113 170 july
FeSO4 58 87 87 131 31 47 41 62 64 96 57 85.5 70 110 84 126 july
MnSO4 171 256 93 140 81 122 33 50 43 64.5 21 31.5 87 130 87 131 july
ZnSO4 11 17 16 23 9 14 6 9 5 7.5 13 19.5 5 10 7 10 july
Boronat 147 221 97 145 106 159 41 61 36 54 68 102 143 214 28 43 july

T1 = Normal dose; T2 = High dose. ANP = Ammonium nitrate-phosphate (NH4NO3): 33% N + 1.3% P; Ammonium sulphate (NH4)2SO4: 21% N + 24% S; TSP = Triple superphosphate [Ca(H2PO4)2]: 20% P + 13.2% Ca; Potassium chloride (KCl): 51% K; Calcium sulphate (CaSO4∙2 H2O): 22.2% Ca; Magnesium sulphate (MgSO4): 17% Mg; Iron sulphate (FeSO4): 21% Fe; Manganese sulphate (MnSO4∙4 H2O): 27% Mn + 18% S; Zinc sulphate (ZnSO4): 35.5% Zn; Boronat; 9% B.

Fertilization Treatments

They were calculated independently for each orchard and considered: fruit nutrient’s needed to produce 20 Mg ha-1 (Salazar-García et al., 2010), available nutrients and other chemical characteristics from soil analyses, leaf nutrients concentration which were transformed to a nutrient balance index (Salazar-García et al., 2011), fertilization efficiency for N, P, K, Ca, Mg, Fe, Mn, Zn, and B (40, 20, 60, 80, 60, 5, 5, 10, and 5%, respectively), tree’s shaded area, and periods of greatest root growth (July and September). During 2010, 2011, 2012 and 2013, three fertilization doses were applied: 1) “Normal” for a yield of 20 Mg ha‑1; 2) “High”, 1.5 times the normal dose (Table 1); 3) Control, an annual application of 17 N, 7.4 P, 14.1 K as 17-17-17 commercial mixture at a dose of 3 kg tree-1.

Fertilizers were distributed around the tree in a 50 cm wide band and 15-20 cm deep, initially at 1.5 m from the trunk and then progressively farther way from the trunk in each subsequent application. Every year, the fertilizer program was slightly modified according to the soil and leaf analyses.

Yield

Fruit yield was evaluated in each tree the first week of June 2011 to 2014. Fruit size (C) was classified according to regional mango packinghouses: C22 (196-220 g), C20 (221-250 g), C18 (251-283 g), C16 (284-315 g), C14 (316-365 g), and C12 (> 366 g).

Alternate Bearing Index

To determine treatment effects on bearing regularity, the alternate bearing index (ABI) was calculated using the equation suggested by Pearce and Dobersek-Urbanc (1967):

ABI = (difference in yield between the previous and present year) / (sum of yields of both years) × 100. ABI ranges from 0 (no alternate bearing) to 1 (complete alternate bearing).

Data Analysis

For cumulative yield and fruit size (2011+2012+2013+2014), a 2 × 3 factorial arrangement (orchards × treatments) was used. In the case of leaf nutrient concentrations, the year (2011, 2012 and 2013) and fertilization treatments (Normal dose, High dose and Control) effect was analyzed. For fruit yield and size, 20 replicates (trees) per treatment and per orchard were considered. In the case of leaf nutrient concentrations, 10 samples per treatment per orchard were used. Analyses of variance were carried out with the SAS software (2008). Means comparison was performed with the Waller-Duncan test (P ≤ 0.05).

RESULTS AND DISCUSSION

Soil Characteristics

In 2013, three years after the start of the research, soil chemical properties varied among treatments. In El Divisadero orchard, the pH dropped from 4.7 (Control) to 4.3 and 4.2 (Normal and High doses, respectively). The same occurred in Las Palmas, where it dropped from 6.6 (Control) to 5.3 and 5.0 (Normal and High doses, respectively) (Table 2). The pH was more acid but within appropriate limits for mango (Castellanos et al., 2000). Overall, fertilization increased the levels of most nutrients in the soil (K, Ca, Fe, Zn, Mn, and B), improving and/or maintaining its fertility (Table 2). In some cases, increases in the levels of some soil nutrients, due to fertilization, promoted higher concentration of some nutrients in leaves, specifically of Mg, Fe and B. However, it is not common to find a relationship between the concentration of these nutrients in the soil and leaves of fruit trees (Salazar-García, 2002).

Table 2: Soil test report (0-30 cm depth) before the application of fertilization treatments (Jan. 2010), and in May 2013, after the fertilizations of summer 2010, 2011 and 2012. Average of three sampled trees per treatment of ‘Ataúlfo’ mango in two orchards (El Divisadero and Las Palmas). 

Analysis El Divisadero Las Palmas
Control 2010 Normal dose 2013 High dose 2013 Control 2010 Normal dose 2013 High dose 2013
pH (1:2 H2O) 4.7 (VA) 4.3 (VA) 4.2 (VA) 6.6 (Ne) 5.3 (Ac) 5.0 (Ac)
Organic matter (%) 1.6 (L) 1.9 (L) 2.2 (L) 0.7 (VL) 2.5 (ML) 2.8 (ML)
CEC (meq 100 g-1) 1.81 (VL) 2.92 (VL) 3.32 (VL) 7.29 (L) 11.1 (L) 10.4 (L)
- - - - - - - - - - - - - - - - - - - - - - - - mg kg-1 - - - - - - - - - - - - - - - - - - - - - - - -
Inorganic N 9.8 (ML) 11.5 (M) 16.7 (M) 11.2 (M) 15.2 (M) 19.9 (M)
P-Bray 0.4 (VL) 2.1 (VL) 5.6 (L) 10.2 (MB) 7.5 (L) 24.0 (M)
K 27.4 (VL) 52.5 (VL) 40.1 (VL) 290 (M) 434.9 (MH) 473.5 (MH)
Ca 130.0 (VL) 185.6 (VL) 181.1 (VL) 918 (MB) 1290.2 (ML) 1247.6 (ML)
Mg 10.6 (VL) 55.8 (L) 46.7 (VL) 231 (M) 421.4 (MH) 342.9 (M)
S 304.0 (MH) 199.9 (M) 217.2 (MH) 65 (VH) 94 (M) 92.2 (M)
Na 5.5 (VL) 5.9 (VL) 5.8 (VL) 17.2 VL) 0.3 (VL) 0.4 (VL)
Fe 1.0 (VL) 2.4 (VL) 3.7 (L) 6.5 (ML) 33.5 (M) 55.3 (MH)
Cu 0.03 (VL) 0.1 (VL) 0.1 (VL) 0.1 (VL) 0.3 (VL) 0.4 (VL)
Mn 1.2 (VL) 1.8 (MH) 1.3 (L) 3.6 (L) 97.1 (VH) 127.5 (VH)
Zn 0.1 (VL) 0.5 (VL) 1 (L) 0.4 (L) 2.5 (ML) 3.9 (ML)
B 0.2 (VL) 0.4 (L) 0.9 (ML) 0.2 (VL) 1.1 (M) 1.3 (M)
Al 76.5 (ML) 124.02 (M) 164.57 (MH) N.D. 0.0 (VL) 10.7 (VL)

VA = very acid; Ac = acid; Ne = neutral; VH = very high; MH = moderately high; M = medium; ML = moderately low; L = low; VL = very low; N.D. = Not determined.

Leaf Elemental Concentrations

The average of leaf nutrient concentrations of all treatments varied with the year of evaluation. The highest concentrations of N, Mg, and Fe were recorded in 2011, a year after the start of the study, but for 2012, concentrations of K, S, Cu, Mn, Zn, and B were higher than those of 2011. In 2013, P concentrations were higher than in 2011 and 2012, and the Mn concentration showed no differences compared to 2012 but was higher than in 2011 (Table 3). In fruit trees grown under rainfed conditions, leaf nutrient concentrations usually show a slow change in response to soil fertilization. This was the case in other species, such as ‘Hass’ avocado in Nayarit, Mexico, where changes in leaf nutrient concentrations occurred after several years of fertilization (Salazar-García et al., 2008; Cossio-Vargas et al., 20091; Salazar-García et al., 2009).

Fertilization treatments did not change leaf concentrations of N, P, K, Ca, S, Cu, Mn and Zn (Table 3). Mg showed its lowest concentration in the High dose treatment. For Fe, the High dose reflected the highest concentration of Fe (42.0 mg kg-1) compared to the Control (33.9 mg kg-1), although it was similar to the Normal dose (38.8 mg kg-1). B concentration was higher with the Normal dose (24.7 mg kg-1) than with the other two treatments.

Table 3: Influence of the year and fertilization treatments on leaf nutrient concentrations in the ‘Ataúlfo’ mango. Fertilizations were done in summer 2010, 2011 and 2012. Leaves of the summer flush and were collected in Feb. 2011, 2012, and 2013 in Las Palmas and El Divisadero orchards. 

N P K Ca Mg S Fe Cu Mn Zn B
- - - - - - - - - - g 100 g-1 - - - - - - - - - - - - - - - - - - mg kg-1- - - - - - - - - -
Years of evaluation
2011 1.30 a 0.11 b 0.52 c 2.05 a 0.26 a 0.07 b 48.93 a 7.07 b 437.23 b 12.25 b 19.18 b
2012 1.02 b 0.11 b 0.79 a 2.15 a 0.24 b 0.39 a 49.35 a 32.39 a 744.52 a 15.64 a 48.55 a
2013 1.1 b 0.16 a 0.67 b 2.2 a 0.22 b 0.02 c 39.1 b 23.7 b 710.8 a 14.6 b 21.4 b
Pr > F 0.0001 0.0001 0.0001 0.1723 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Fertilization treatments (2013 sampling)
Normal 1.1 a 0.17 a 0.72 a 2.3 a 0.26 a 0.02 a 38.8 ab 24.2 a 708.9 a 15.5 a 24.7 a
High 1.2 a 0.15 a 0.65 a 2.2 a 0.19 b 0.02 a 42.0 a 24.5 a 689.9 a 14.6 a 18.3 b
Control 1.1 a 0.14 a 0.63 a 1.9 a 0.23 ab 0.01 a 33.9 b 20.9 a 756.2 a 12.6 a 21.4 b
Pr > F 0.5751 0.1601 0.2355 0.4032 0.0068 07543 0.0461 0.5312 0.8836 0.1112 0.0002

Mean separation in columns, for each section, by Waller-Duncan’s multiple range test (P ≤ 0.05).

Total Cumulative Yield and Fruit Size

The highest cumulative yield was obtained in Las Palmas orchard (306.9 kg tree-1), of which 89.6% was small-sized fruit (C22: 274.9 kg tree‑1) (Table 4). In El Divisadero, the cumulative yield was lower (179.4 kg tree-1), but 74.5% of this yield (133.6 kg tree‑1) corresponded to the C22 size class. The lower yield (7.0 Mg ha-1 year1) in El Divisadero orchard was possibly influenced by the high production of “baby” mango (parthenocarpic fruit). Salazar-García et al. (2016) evaluated the presence of such fruit in this orchard, reaching 91% at fruit-set (March) and 63.7% at harvest (May). In Las Palmas orchard, these proportions were lower, 72.2% (fruit-set) and 40.1% (harvest).

Our results provide evidence that fertilization treatments modified fruit yield and size. The Normal dose produced the highest cumulative yield (292.8 kg tree‑1), followed by the High dose (254.1 kg tree‑1) and the Control (184.4 kg tree-1) (Table 4). The highest fruit yield was obtained with the Normal dose treatment (73.2 kg tree-1).

Table 4: Influence of the orchard and fertilization treatments (2010 to 2013) on cumulative yield, fruit size (2011 to 2014 harvests) and alternate bearing index (ABI) in the ‘Ataúlfo’ mango. 

Cumulative yield ABI Distribution of yield by size (kg tree-1)
C22
196-220
C20
221-250
C18
251-283
C16
284-315
C14
316-365
C12
> 366
kg tree-1 - - - - - - - - - - - - - g - - - - - - - - - - - - -
Experimental orchards
Las Palmas 306.9 a 0.11 b 274.9 a 22.7 b 5.7 a 1.3 a 1.3 a 0.1 b
El Divisadero 179.4 b 0.18 a 133.6 b 33.0 a 8.8 a 1.9 a 1.1 a 0.9 a
Pr > F 0.0001 0.0001 0.0001 0.0009 0.1229 0.2750 0.7113 0.0144
Fertilization treatments
Normal 292.8 a 0.14 a 249.6 a 31.4 a 7.3 ab 1.9 a 2.2 a 0.4 a
High 254.1 b 0.16 a 210.3 b 31.0 a 10.2 a 1.7 a 0.2 b 0.6 a
Control 184.4 c 0.13 a 155.6 c 21.1 b 4.3 b 1.3 a 1.3 ab 0.6 a
Pr > F 0.0001 0.0504 0.0001 0.0088 0.0486 0.7464 0.0126 0.4890
Distribution of yield by size (%)
Normal 292.8 a 85.2 10.7 2.5 0.6 0.8 0.1
High 254.1 b 82.8 12.2 4.0 0.7 0.1 0.2
Control 184.4 c 84.4 11.4 2.3 0.7 0.7 0.3

Mean separation in columns, for each table section, by Waller-Duncan’s multiple range test (P ≤ 0.05).

The average yield 2011-2014 for cv. Ataúlfo in the municipalities of Compostela and San Blas, where the experimental orchards were located, was 8.3 Mg ha-1 (SIAP-SAGARPA, 2014); this is equivalent to 53.2 kg tree-1 (with a plantation of 156 trees ha-1). For both orchards, the Normal dose produced 11.4 Mg ha-1 (73.2 kg tree-1), estimating a 38% increase.

Regardless the mango-producing region (China, Egypt, India, Mexico, Pakistan, Thailand, Taiwan, others), mango fertilization is commonly based on N, P and K (Suriyapananont, 1992; Sharma et al., 2000; Shu et al., 2000; Shakeel et al., 2001; Xiuchong et al., 2001; Vázquez-Valdivia et al., 2005) and sometimes only K (Taha et al., 2014). The applied doses of N, P and K per tree in these countries varied from 340 to 1500 g, 54.5 to 654 g and 249 to 623 g, respectively. For these same nutrients, doses that increased fruit yield in the present study were 509-608 g N, 21‑206 g P, and 132‑582 g K. The observed differences in relation to other producing regions support the use of the SSF approach to increase yield for mango in Nayarit. Besides, unlike the aforementioned reports, this study included applications of Ca, Mg, Fe, Mn, Zn and B. The addition of such nutrients could influence the results here reported; however, their specific effect was not the scope of this study.

In the fertilization treatments, the increased yield was accompanied by increased production of small fruit (C22) (Table 4). However, the sum of the intermediate (C20+C18+C16) and large (C14+C12) sizes was higher with the High (44.2 kg tree-1) and Normal (43.6 kg tree-1) doses, compared to the Control (28.8 kg tree-1). For the 2011-2014 harvests, the ABI only showed differences between orchards (Table 4). Its values were 0.11 and 0.18 for Las Palmas and El Divisadero, respectively.

The SSF approach proved to increase fruit yield and size of ‘Ataúlfo’ mango. The highest total yield and C22 (196-220 g) and C20 (221-250 g) intermediate fruit sizes were obtained with the Normal fertilization dose. This treatment was based on the application per tree of 509-608 g N, 21-206 g P, 132-582 g K, 19‑234 g Mg, 6.5-18 g Fe, 6-46 g Mn, 2-6 g Zn and 3-13 g B, depending on the orchard. We found that the High fertilization dose was beyond tree needs, resulting in lower production composed of smaller fruit size, compared to the Normal dose. The results herein are now available for ‘Ataúlfo’ mango growers in these regions and the SSF approach used are worth to be tested in other producing regions.

Economic Analysis

The most profitable fertilization treatment was the Normal dose (Table 5). In addition to improving the fruit size, this treatment increased yield by 4.3 Mg ha‑1 and had a net economic benefit of US$ 537.7 per hectare, each year, compared to the Control. As we can see, yield and fruit size showed a significant response in the short term, confirming that fertilization trials in fruit trees should be conducted over several seasons. The short-term response is important to mango growers to convince them that they do not have to wait several years to have an economic benefit from proper fertilization management.

Table 5: Economic analysis for fertilization treatments evaluated. Yield data are the average of the 2011-14 harvests. 

Item Treatments
Control Normal dose High dose
Total fruit yield (kg ha-1) 7191.6 11 419.2 9909.9
Yield (kg) fruit sizes C12 (> 366 g), C14 (316-365 g), C16 (284-315 g) 124.8 187.2 101.4
Price (US $ kg-1) 0.445 0.445 0.445
Gross income (US $/ha) 55.5 83.3 45.1
Yield (kg) fruit size C18 (251-283 g) 171.6 280.8 405.6
Price (US $ kg-1) 0.260 0.260 0.260
Gross income (US $ ha-1) 44.6 73.0 105.4
Yield (kg) fruit sizes C20 (221-250 g) and C22 (196-220 g) 6895.2 10 966.8 9422.4
Price (US $ kg-1) 0.148 0.148 0.148
Gross income (US $ ha-1) 1020.5 1623.1 1394.5
Gross income all fruit sizes (US $ ha-1) 1120.6 1779.4 1545.0
Fertilizer plus application cost 290 411 617
Net benefit per fertilization treatment (US $ ha-1) 830.7 1368.4 928

US$ = 13.5 MXP (sept. 2014). Minus other production costs.

ACKNOWLEDGEMENTS

This research was partially funded by the INIFAP, CONACYT-FORDECYT, and FOMIX- Nayarit. The authors thank José González-Valdivia and Gregorio Santillán-Valladolid for their technical assistance as well as Elías Montoya (Las Palmas) and Misael Monteón (El Divisadero) for allowing the use of their mango orchards.

REFERENCES

Castellanos, J. Z., J. X. Uvalle-Bueno y A. Aguilar-Santelises. 2000. Manual de interpretación de análisis de suelo y agua. México: Instituto de Capacitación para la Productividad Agrícola. Colección INCAPA. México. [ Links ]

García, E. 1998. Modif icaciones al sistema de clasificación de Köppen. Instituto de Geografía, UNAM. México, D. F. [ Links ]

García-Martínez, R., A. López-Jiménez, C. Saucedo-Veloz, S. Salazar-García y J. Suárez-Espinosa. 2015. Maduración y calidad de frutos de mango ‘Kent’ con tres niveles de fertilización. Rev. Mex. Cienc. Agríc. 6: 665-678. [ Links ]

INEGI (Instituto Nacional de Estadística Geografía e Informática). 1999. Carta Edafológica del estado de Nayarit. Dirección General de Geografía del Instituto Nacional de Estadística Geografía e Informática. Escala 1: 50 000. Aguascalientes, Ags., México. [ Links ]

Noriega-Cantú D. H., R. Cruzaley-Sarabia, N. Alarcón-Cruz, E. Garrido-Ramírez, R. González-Mateos, V. M. Domínguez- Márquez, J. Pereyda-Hernández y M. E. López-Estrada. 2012. Guía para la producción de mango en Guerrero. INIFAP. CIRPAS. Campo Experimental Iguala. Folleto Técnico Núm. 18. Guerrero, México. http://www.cirpas-inifap.gob.mx/publicaciones/documentos/MANGO.pdf (Consulted: February 15, 2019). [ Links ]

Ortega-Arreola, R., G. Díaz-González y J. L. Macías-González. 1993. Guía para producir mango en la costa de Jalisco. INIFAP. CIRPAC. Campo Experimental Costa de Jalisco. Folleto Técnico Núm. 4. Jalisco. México. http://www.cesix.inifap.gob.mx/frutalestropicales/articulos/43.pdf (Consulted: February 15, 2019). [ Links ]

Pearce, S. C. and S. Dobersek-Urbanc. 1967. The measurement of irregularity in growth and cropping. J. Hort. Sci. 42: 295-305. doi: 10.1080/00221589.1967.11514216. [ Links ]

Peralta-Antonio, N., A. Rebolledo-Martínez, A. E. Becerril-Román, D. Jaén-Contreras y A. L. del Angel-Pérez. 2014. Response to organic fertilization in mango cultivars: Manila, Tommy Atkins and Ataulfo. J. Soil Sci. Plant Nutr. 14: 688-700. [ Links ]

Pérez-Barraza, M. H., V. Vázquez-Valdivia, J. A. Osuna-García, A. Ríos-Torres y G. López-Arriaga. 2007. Diagnóstico del cultivo del mango en Nayarit. INIFAP. CIRPAC. Campo Experimental Santiago Ixcuintla. Folleto Técnico Núm. 7. Nayarit. México. http://biblioteca.inifap.gob.mx:8080/jspui/bitstream/handle/123456789/1291/DIAGNOSTICO%20DEL%20CULTIVO%20DEL%20MANGO%20EN%20NAYARIT.pdf?sequence=1 (Consulted: February 15, 2019). [ Links ]

Prieto-Martínez, J. J., J. E. Covarrubias-Alvarado, A. Romero-Cadena y J. J. Figueroa-Viera. 2005. Paquete tecnológico para el cultivo de mango en el estado de Colima. Gobierno del estado de Colima. Manual Núm. 003. Colima, México. http://www.campocolima.gob.mx/paginaOEIDRUS/Paquete%20Tecnologico%20del%20Mango.pdf (Consulted: May 15, 2018). [ Links ]

Salazar-García, S. 2002. Nutrición de aguacate, principios y aplicaciones. Libro Técnico. 165. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) e Instituto de la Potasa y el Fósforo (INPOFOS). Querétaro, México. [ Links ]

Salazar-García, S., L. E. Cossio-Vargas y I. J. L. González-Durán. 2008. Corrección de la def iciencia crónica de zinc en aguacate ‘Hass’. Rev. Chapingo Serie Hortic. 14: 153-159. [ Links ]

Salazar-García, S. , L. E. Cossio-Vargas y I. J. L. González-Durán. 2009. La fertilización de sitio específ ico mejoró la productividad del aguacate ‘Hass’ en huertos sin riego. Agric. Téc. Méx. 35: 439-448. [ Links ]

Salazar-García, S., I. J. L. González-Durán y A. Álvarez-Bravo. 2010. Cantidad de nutrimentos removidos por la cosecha de mango en Nayarit, México. INIFAP, CIRPAC. Campo Experimental Santiago Ixcuintla. Programa de computo. < http://cesix.inifap.gob.mx/frutalestropicales/remocionmangonayarit.php > (Consulted: February 02, 2011). [ Links ]

Salazar-García, S., I. J. L. González-Durán, A. Álvarez-Bravo y J. González-Valdivia. 2011. Sistema para el diagnóstico nutrimental foliar de los mangos ‘Ataúlfo’, ‘Kent’ y ‘Tommy Atkins’ en Nayarit, México. Programa de cómputo. INIFAP. CIRPAC. Campo Experimental Santiago Ixcuintla. < http://cesix.inifap.gob.mx/frutalestropicales/nutricionmangonayarit.php > (Consulted: October 28, 2011). [ Links ]

Salazar-García, S., G. Santillán-Valladolid, E. F. Hernández-Valdés, R. Medina-Torres, M. E. Ibarra-Estrada y R. Gómez-Aguilar. 2014. Efecto a corto plazo de la fertilización de sitio específ ico en mangos ‘Kent’ y ‘Tommy Atkins’ cultivados sin riego. Rev. Mex. Cienc. Agríc. 4: 645-659. doi: 10.29312/remexca.v5i4.925. [ Links ]

Salazar-García, S., A. Álvarez-Bravo, M. E. Ibarra-Estrada, J. González-Valdivia y R. Medina-Torres. 2016. Presencia de fruto partenocárpico en mango ‘Ataúlfo’ y su relación con la temperatura ambiental y tratamientos de fertilización. Rev. Mex. Cienc. Agríc. Pub. Esp. 13: 2615-2626. doi: https://doi.org/10.29312/remexca.v0i13.487. [ Links ]

SAS Institute. 2008. SAS/STAT® 9.2 user’s guide. SAS Institute Inc. Cary, NC, USA. [ Links ]

Shaaban, S. H. A. and M. M. Shaaban. 2012. Impact of the nutritional status on yield of nine mango cultivars grown under farm conditions at Giza Governorate, Egypt. J. Am. Sci. 8: 304-310. [ Links ]

Shakeel, A., M. Jilani, G. Abdul, K. Waseem, and R. Saif-ur. 2001. Effect of different levels of NPK fertilizers on the yield and quality of mango (Mangifera indica L.). J. Biol. Sci. 1: 256-258. doi: 10.3923/jbs.2001.256.258. [ Links ]

Sharma, R. C., B. V. C. Mahajan, B. S. Dhillon, and A. S. Azad. 2000. Studies on the fertilizer requirements of mango cv. Dashehari in sub-mountainous region of Punjab. Indian J. Agr. Res. 34: 209-210. [ Links ]

Shu, Z. H., C. R. Yen, L. S. Ke, T. S. Lin, C. C. Shiesh, D. N. Wang, and M. F. Liu. 2000. Mango production in Taiwan. Acta Hort. 509: 87-94. doi: 10.17660/ActaHortic.2000.509.6. [ Links ]

SIAP-SAGARPA (Servicio de Información y estadística Agroalimentaria y Pesquera-Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2014. Anuario estadístico de la producción agrícola. Cierre agrícola 2014. SIAP-SAGARPA. http://www.siap.gob.mx/cierre-de-la-produccion-agricola-por-cultivo/ (Consulted: March 14, 2015). [ Links ]

SIAP-SAGARPA (Servicio de Información y estadística Agroalimentaria y Pesquera-Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2018. Anuario estadístico de la producción agrícola. Cierre agrícola 2018. SIAP-SAGARPA. https://nube.siap.gob.mx/cierreagricola/ (Consulted: May 15, 2019). [ Links ]

Suriyapananont, V. 1992. Fertilizer trials on mango (Mangifera indica L.) var. Nam Dok Mai in Thailand. Acta Hort. 321: 529-534. doi: 10.17660/ActaHortic.1992.321.59. [ Links ]

Taha, R. A., H. S. A. Hassan, and E. A. Shaaban. 2014. Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of Zebda mango trees. Middle-East J. Sci. Res. 21: 518-524. doi: 10.5829/idosi.mejsr.2014.21.03.21483. [ Links ]

Tucuch-Cahuich, F. M., A. Palacios-Pérez, R. Ku-Naal y C. Guzmán-Estrada. 2005. Manejo del cultivo del mango en el estado de Campeche. INIFAP. CIRSE. Folleto Técnico Núm. 5. Campo Experimental Edzná. Campeche, Campeche, México. http://www.cesix.inifap.gob.mx/frutalestropicales/articulos/37.pdf (Consulted: April 20, 2017). [ Links ]

Vázquez-Valdivia, V., M. H. Pérez-Barraza, S. Salazar-García y E. Becerra-Bernal. 2005. Crecimiento, nutrición y rendimiento del mango ‘Ataúlfo’ con interinjerto de porte bajo ‘Esmeralda’. Rev. Chapingo Serie Hortic. 11: 209-213. [ Links ]

Xiuchong, Z., L. Guojian, Y. Jianwu, A. Shaoying, and Y. Lixian. 2001. Balanced fertilization on mango in Southern China. Better Crops Int. 15: 16-20. [ Links ]

1Cossio-Vargas, L. E., S. Salazar-García y J. L. González-Durán. 2009. Respuesta del aguacate ‘Hass’ a la fertilización con boro en huertos sin riego. 4-17 pp. In: Memorias III Congreso Latinoamericano del Aguacate. 11-13 noviembre 2009. Medellín, Colombia.

Received: March 14, 2019; Accepted: June 04, 2019

Corresponding autor (salazar.avocado@gmail.com)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License