SciELO - Scientific Electronic Library Online

 
vol.37 número4Erodabilidad y riesgo de erosión de suelos negros del centro de México: estudio de un PhaozemCaracterísticas nutricionales de maíz cultivado con vermicomposta índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Terra Latinoamericana

versão On-line ISSN 2395-8030versão impressa ISSN 0187-5779

Terra Latinoam vol.37 no.4 Chapingo Out./Dez. 2019  Epub 24-Mar-2020

https://doi.org/10.28940/terra.v37i4.524 

Artículos Científicos

Nutritional value of conventional, wild and organically produced fruits and vegetables available in Baja California Sur markets

Valor nutricional de frutas y vegetales producidos de manera convencional, silvestre y orgánica disponibles en el mercado de Baja California Sur

Pablo Misael Arce-Amezquita1 
http://orcid.org/0000-0002-7938-9084

Felix Alfredo Beltrán-Morales1   
http://orcid.org/0000-0002-9446-3916

Gisela Alejandra Manríquez-Rivera1 

Mariams Elizabeth Cota-Almanza1 

Atenas Quian-Torres1 

Rosa Guadalupe Peralta-Olachea1 

1 Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5., Apartado Postal 19-,B. 23080 La Paz, Baja California Sur, México.


SUMMARY:

Consuming fruits and vegetables plays a crucial role in the development of age-related diseases including arthritis, diabetes, cancer, atherosclerosis, vascular diseases and metabolic syndromes caused by oxidative stress. Demand for organic food is on the rise, reflected in a significant 11% growth in the organic food trade in the United States, the world’s largest organic market. More farmers are currently producing on more certified organic land, and to date 179 countries have reported activities in organic agriculture. Vegetables analyzed for this study were obtained from commercial shopping centers of the city of La Paz Baja California Sur and were classified into four groups: tomatoes, peppers, citrus fruit and leafy vegetables and subgrouped into conventional, wild and organically produced. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) technique was used to measure the antioxidant activity of the plant extracts. Of the organically produced group, grape tomatoes with 1.273 mg trolox equivalent mg per gram of sample and certified organic bell pepper with 1.119 mg trolox equivalent per gram presented the highest antioxidant power. Of the group of citrus fruits, we found that the wild naranjitas had higher antioxidant power with 1.623 mg trolox equivalent per gram of sample. Finally, of the leafy vegetable group, wild greens (quelites) showed the highest antioxidant power with 1.313 mg trolox equivalent per gram of sample.

Index words: antioxidants; organic crops; oxidative stress

RESUMEN:

El consumo de frutas y hortalizas desempeña un papel crucial en el desarrollo de enfermedades relacionadas con la edad como artritis, diabetes, cáncer, aterosclerosis, enfermedades vasculares y síndromes metabólicos causados por el estrés oxidativo. La demanda de alimentos orgánicos está aumentando, y se refleja en el significativo crecimiento de 11% en los alimentos orgánicos en los Estados Unidos, el mercado orgánico más grande del mundo. Más agricultores están produciendo más productos certificados como orgánicos y hasta ahora 179 países informaron actividades relacionadas con la agricultura orgánica. Los vegetales analizados para este estudio se obtuvieron de tiendas comerciales de la ciudad de La Paz Baja California Sur y fueron clasificados en cuatro grupos: tomates, pimientos, cítricos y verduras de hoja; los sistemas de producción evaluados fueron: el sistema convencional, silvestre y producción orgánica certificada. La técnica 1,1-difenil-2-picrylhydrazyl (DPPH) se utilizó para medir la actividad antioxidante de los extractos de plantas. El tomate uva certificado como orgánico presentó el más alto poder antioxidante con 1.273 mg equivalente trolox por gramo de la muestra; así mismo el chile morrón orgánico certificado obtuvo el mayor poder antioxidante con 1.119 mg equivalente de trolox gramo de muestra. En relación con el grupo de los cítricos, encontramos que las naranjitas silvestres tenían mayor poder antioxidante con 1.623 mg trolox equivalente por gramo de muestra. Finalmente, dentro del grupo de las hortalizas de hoja, el quelite silvestre mostró el más alto poder antioxidante con 1.313 mg trolox equivalente por gramo de muestra.

Palabras clave: antioxidantes; cultivos orgánicos; estrés oxidativo

INTRODUCTION

In 2000-2011 period, the value of vegetable production in Mexico reached 467 283.5 million pesos. Of the 158 different types of produced vegetables, red tomato, green tomato, white onion, green chili and asparagus made up the largest portion (SAGARPA, 2012). Consumer longevity seems to increase with caloric reduction and high levels of antioxidants in their diets. Antioxidants can reduce mitochondrial degradation, cell metabolism and oxygen consumption. It has been observed that antioxidant levels reduce with aging, mainly in blood and some organs. These degenerative immune system changes can induce development of cataracts, Alzheimer, Parkinson or cardiovascular disorders (Zorrilla, 2002; De La Fuente, 2002). Generally, plants with high antioxidant potential contain phenolic compounds that act as reducing agents, hydrogen donors and reactive oxygen species quenchers (Javanmardi et al., 2003). Consuming fruits and vegetables is of great importance in the treatment and prevention of aging, cancer, chronic-degenerative diseases, among other disorders caused by oxidative stress which generates reactive oxygen species (ROS) in the body. ROS action is quenched by the content and capacity of antioxidant compounds through donation of one of their own electrons, protecting cells from oxidative damage (Soto et al., 2012). ROS are mainly formed endogenously in cellular respiration (mitochondria) and, due to the effect of pollutants, exogenously. These molecules react quickly and damage other biomolecules, competing for electrons in order to reach stability (Figure 1) (Rodríguez et al., 2006).

Figure 1: Oxidative stress effects on human health. 

Consumer demand for organic products is increasing and is reflected in a significant increment of 11% in the USA market, the largest organic market in the world. Farmers are producing organically on more organic certified land and 179 countries report organic agriculture (Willer and Lernoud, 2017). This study has the objective of determining the nutritional value, through the antioxidant capacity, of four groups of vegetables available to Baja California Sur consumers: tomatoes, peppers, citrus fruits and leafy vegetables.

MATERIALS AND METHODS

This study was carried out in May 2018 at Universidad Autónoma de Baja California Sur (UABCS), located in La Paz, Baja California Sur, Mexico. According to Robles (19981), the city of La Paz is located at the northeastern tip of the La Paz Valley 24° 10’ N and 110° 19’ W at 18.5 m altitude. The fruits and vegetables analyzed were obtained from local markets of the city and were organized into four groups: tomatoes, peppers, citrus and leafy vegetables and subgrouped into conventional, wild and organically produced. The obtained tomatoes were round (conventional, hydroponic), cherry (conventional), saladette (conventional), grape (organic). The obtained peppers were California (conventional), güerito (conventional), poblano (conventional), habanero (conventional), jalapeño (conventional) and bell (organic). The citrus fruits obtained were naranjita (wild), orange (conventional), grapefruit (conventional) and lime (conventional). Finally, the leafy vegetables obtained were lettuce (conventional), spinach (conventional), chard (conventional), purslane (conventional) and quelite (wild).

The evaluated parameter was the antioxidant power of leaves, stem and fruits of the samples mentioned above (vide supra). One-hundred grams of the sample were finely ground with 100 mL of distilled water and then carefully vacuum filtered in order to obtain a clear mixture. The obtained mixture was used for measurement of total soluble solids (ºBrix) using a digital refractometer (Hanna, HI 96801). Likewise, the mixture was used to measure pH and electric conductivity using a pH/EC/TDS/Temp tester (Hanna, HI98130). To measure antioxidant capacity, 1 mL serial dilutions of the juice were prepared in methanol. These dilutions were then mixed with 1 mL of a DPPH solution in methanol at 4 mg 100 mL-1 concentration. The mixture was then left to stand for 30 min in the dark, and absorbance was obtained in a spectrophotometer (ThermoFisher Scientific, Genesys 10S) at 517 nm (Xie and Schaich, 2014).

The obtained measurements were then compared to a trolox calibration curve constructed using the same DPPH solution mention above and trolox solutions at different concentrations (Figure 2). Results are expressed in milligrams of trolox equivalent g-1 fresh fruit or vegetable biomass.

Figure 2: Trolox calibration curve. 

A randomized blocks experimental assay was used and multiple mean comparisons were performed using Tukey HSD P = 0.05. The statistical analysis was carried out using a statistics program from the Agronomy Department at the Universidad Autónoma de Nuevo León (Olivares, 2012).

RESULTS AND DISCUSSION

DPPH is a stable free radical, commonly used to evaluate the antioxidant potential of foods (Floegel et al., 2011). The higher the ability of a fruit or vegetable sample to turn DPPH purple color to yellow, due to the formation of 1,1-Diphenyl-2-picrylhydrazine, the higher its antioxidant power (Figure 3).

Figure 3: DPPH reaction with natural antioxidants. 

As shown in Table 1, among the group of tomatoes, certified organic grape tomatoes had the highest antioxidant capacity with 1.273 mg trolox equivalents g-1 fresh biomass. Round and saladette tomatoes grown conventionally had the lowest antioxidant capacity. Regarding the group of peppers, certified organic bell pepper showed the highest antioxidant capacity with 1.119 mg trolox equivalents per g fresh biomass. All other tested peppers (güerito, California, habanero, poblano and jalapeño) showed similar antioxidant capacity that was lower than the organically produced bell pepper. From the citrus group, wild naranjita had 1.623 mg trolox equivalents per gram of fresh biomass, and lime showed the lowest antioxidant capacity. Finally, among the leafy vegetables wild quelite had the highest antioxidant capacity with 1.313 mg trolox equivalents per gram of fresh biomass. Chard and purslane obtained conventionally showed the lowest antioxidant power. All data obtained agree with the studies carried out by De Oliveira et al. (2016), who found that organic crops contain higher amounts of phenolic compounds and higher antioxidant capacity than conventional crops.

Table 1: Antioxidant capacity of four groups of vegetables. 

Group Variety Electric
conductivity
pH Total soluble
solids or °Bx
Antioxidant capacity
mg equivalents of
trolox per gram
dS m-1
Tomatoes
Round (conventional) 2.67 c 4.03 a 4.30 d 0.392 c
Round (conventional hydroponic) 2.39 cd 3.84 ab 5.35 c 0.459 c
Cherry (conventional) 3.84 b 3.33 d 9.75 a 0.836 b
Saladette (conventional) 1.86 d 3.63 bc 4.40 d 0.566 c
Grape (organic) 4.84 a 3.39 cd 6.70 b 1.273 a
Citrus fruits
Naranjita (wild) 7.45 a 2.03 a 17.77 a 1.623 a
Grapefruit (conventional) 3.81 c 3.03 c 12.80 c 1.376 b
Orange (conventional) 4.20 c 3.31 b 14.27 b 1.446 b
Lime (conventional) 5.24 b 2.01 d 8.850 d 1.092 c
Peppers
California (conventional) 2.89 a 5.77 a 5.05 d 0.299 b
Güerito (conventional) 3.18 a 5.82 a 4.65 e 0.217 b
Poblano (conventional) 3.11 a 5.47 b 8.20 b 0.358 b
Habanero (conventional) 2.67 a 5.38 b 5.20 d 0.268 b
Jalapeño (conventional) 2.42 a 5.59 ab 6.15 c 0.288 b
Bell (organic) 2.64 a 4.98 c 9.70 a 1.119 a
Leafy vegetables
Quelite (wild) 15.04 b 5.318 cd 7.57 a 1.313 a
Lettuce (conventional) 2.42 d 5.360 c 1.40 c 0.291 c
Spinach (conventional) 7.085 d 5.280 d 3.28 b 0.573 b
Chard (conventional) 8.095 c 5.763 a 3.93 b 0.288 c
Purslane (conventional) 17.43 a 5.493 b 2.15 c 0.522 b

Values with the same letter in a given column per group are statistically equivalent (Tukey, 0.05).

Interestingly, the content if soluble solids of a given group correlates with the antioxidant capacity, possibly because of water soluble antioxidants like vitamin C (Thaipong et al., 2006). However, among tomato group, the organic grape variety shows higher antioxidant power than conventional cherry which has more total soluble solids. This case could be an example of vegetables with other more potent antioxidants like distinctive phenolic compounds and carotenoids (Lindsay and Astley, 2002). A healthy and balanced diet based on fruits and vegetables that contain high amounts of compounds with antioxidant properties can help reduce cell death in sick patients (Terry et al., 2001) and most importantly, consumption of these fruits and vegetables can prevent development of chronic-degenerative diseases (Hu, 2003; McCullough et al., 2003). A study carried out by Baudry et al. (2018) showed an important decrease in cancer risk of French participants that had higher consumption of organic food. This study conducted from 2009 to 2016 considered nearly 70 000 people. An important fact to consider is that organic products are pesticide and synthetic fertilizer free; therefore, consumers are not exposed to possible carcinogenic chemicals such as malathion, parathion, etc., which have been linked to increased cancer risk (Gray et al., 2017; Mostafalou and Abdollahi, 2013).

CONCLUSIONS

- Organic certified grape tomato with 1.273 mg trolox equivalent per g of sample presented the highest antioxidant power. Additionally, certified organic bell pepper had the highest antioxidant power with 1.119 mg trolox equivalent per g of sample. Regarding the group of citrus fruits, we found that wild naranjitas had higher antioxidant power with 1.623 mg trolox equivalent per g of sample. Finally, as far as the leafy vegetables group, wild quelites showed the highest antioxidant power with 1.313 mg trolox equivalent per g of sample.

- The results obtained in this study give evidence that the production method has a very important effect on nutritional value. Wild and organic production increases antioxidant capacity of fruits and vegetables as shown the analysis performed in this investigation. Wild production is an interesting source of fruits and vegetables, especially those from regions where stressful climate conditions promote metabolic changes in plants, which protect themselves by producing antioxidant compounds. Agriculture practiced in extreme conditions, such as those in Baja California Sur, could be a strategy to increase the nutritional value of fruits and vegetables. Consumption of these products is undoubtedly a natural strategy that can help to reduce problems related to aging and chronic-degenerative diseases.

REFERENCES

Baudry, J., K. E. Assmann, M. Touvier, B. Allès, L. Seconda, P. Latino-Martel, K. Ezzedine, P. Galan, S. Hercberg, D. Lairon, and E. Kesse-Guyot. 2018. Association of frequency of organic food consumption with cancer risk: Findings from the NutriNet-Santé prospective cohort study. JAMA Int. Med. 178: 1597-1606. doi: 10.1001/jamainternmed.2018.4357. [ Links ]

De la Fuente, M. 2002. Effects of antioxidants on immune system ageing. Eur. J. Clin. Nutr. 56 (suppl.3): S5-8. doi: 10.1038/sj.ejcn.1601476. [ Links ]

De Oliveira, F., R. Dos Santos, R. Lana de Sousa, and J. T. Anderson. 2016. Organic and conventional vegetables: Comparison of the physical and chemical characteristics and antioxidant activity. Afr. J. Biotechnol. 15: 1746-1755. doi: 10.5897/AJB2016.15386. [ Links ]

Floegel, A., D. Kimb, S. Chung, S. I. Koo, and O. K. Chun. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24: 1043-1048. doi: https://doi.org/10.1016/j.jfca.2011.01.008. [ Links ]

Gray, J. M., S. Rasanayagam, C. Engel, and J. Rizzo. 2017. State of the evidence 2017: An update on the connection between breast cancer and the environment. Environ. Health. 16: 94. doi: 10.1186/s12940-017-0287-4. [ Links ]

Hu, F. B. 2003. Plant-based foods and prevention of cardiovascular disease: An overview. Am. J. Clin. Nutr. 78: 544-551. doi: 10.1093/ajcn/78.3.544S. [ Links ]

Javanmardi, J., C. Stushnoff, E. Locke, and J. M. Vivanco. 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83: 547-550. doi: htpps://doi.org/10.1016/S0308-8146(03)00151-1. [ Links ]

Lindsay, D. G. and S. B. Astley. 2002. European research on the functional effects of dietary antioxidants-EUROFEDA. Mol. Aspects Med. 23:1-38. doi: 10.1016/S0098-2997(02)00005-5. [ Links ]

McCullough, M. L., A. S. Robertson, A. Chao, E. J. Jacobs, M. J. Stampfer, D. R. Jacobs, W. R. Diver, E. E. Calle, and M. J. Thun. 2003. A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Cause Control. 14: 959-970. doi: https://doi.org/10.1023/B:CACO.0000007983.16045.a1. [ Links ]

Mostafalou, S. and M. Abdollahi. 2013. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 268: 157-177. doi: 10.1016/j.taap.2013.01.025. [ Links ]

Olivares Sáenz, E. 2012. Programa estadístico versión 1.0. Facultad de Agronomía de la Universidad Autónoma de Nuevo León. Escobedo, N. L., México. [ Links ]

Rodríguez, J. L., O. Valdés y A. Alemán. 2006. Evaluación de la actividad antioxidante de cinco hierbas aromáticas. Cienc. Tecnol. Alim. 16: 30-36. [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2012. Sistema de Información Agropecuaria de Consulta, 1980-2011 (SIACON). México, D. F. [ Links ]

Soto G., A., G. Ettiene, E. Pérez, L. Sandoval, L. Montilla y E. Soto. 2012. Propagación y fertilización del cultivo del guanábano. II: Características químicas de frutos. Rev. Fac. Agron. (LUZ) 29: 20-36. [ Links ]

Terry, P., J. B. Terry, and A. Wolk. 2001. Fruit and vegetable consumption in the prevention of cancer: An update. J. Int. Med. 250: 280-290. doi: https://doi.org/10.1111/j.1365-2796.2001.00886.x. [ Links ]

Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D. H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 19: 669-675. doi: https://doi.org/10.1016/j.jfca.2006.01.003. [ Links ]

Willer, H. and J. Lernoud. 2017. The world of organic agriculture statistics and emerging trends 2017. Research Institute of organic agriculture. FIBL and IFOAM. Medienhaus Plump. Rheinbreitbach, Germany. Printed version ISBN: 978-3-03736-040-8. [ Links ]

Xie, J. and K. M. Schaich. 2014. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 62: 4251-4260. doi: https://doi.org/10.1021/jf500180u. [ Links ]

Zorrilla G., A. E. 2002. El envejecimiento y el estrés oxidativo. Rev. Cubana Invest. Bioméd. 21: 178-185. [ Links ]

1Robles Gil-Mestre, S. 1998. El clima de la Ciudad de La Paz, B.C.S. Tesis de Maestría. UNAM, México, D. F. 233 pp.

Received: March 14, 2019; Accepted: May 08, 2019

Corresponding author (abeltran@uabcs.mx)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License