SciELO - Scientific Electronic Library Online

vol.46 issue3Chemical characterization of soluble polysaccharides in the red alga Acanthophora spicifera from La Paz Bay, Baja California Sur, MexicoShell dimension-weight relationships in the blood cockle Larkinia grandis (Bivalvia: Arcidae) on the southeastern coast of the Gulf of California author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Ciencias marinas

Print version ISSN 0185-3880

Cienc. mar vol.46 n.3 Ensenada Sep. 2020  Epub Apr 16, 2021 

Research notes

Expansion of the geographical distribution of the Caribbean reef octopus (Octopus briareus) to the Gulf of Mexico

Expansión de la distribución geográfica del pulpo de arrecife caribeño (Octopus briareus) hacia el golfo de México

Marco Antonio Ponce-Márquez1 

Miguel Ángel Gamboa-Álvarez2  3  * 

Julio Enrique De la Rosa-Castillo4 

Jorge Alberto López-Rocha1  5 

Carlos Rosas1 

1 Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, CP 97130, Sisal, Yucatán, Mexico.

2 Posgrado Institucional en Ciencias Agropecuarias y Manejo de Recursos Naturales Tropicales, Campus de Ciencias Biológicas y Agropecuarias-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, CP 97315, Mérida, Yucatán, Mexico.

3 Unidad de Vida Silvestre y Medio Ambiente, A. C., CP 97315, Sierra Papacal, Yucatán, Mexico.

4 Instituto Tecnológico de Conkal, km 16.3, Antigua Carretera Mérida-Motul, CP 97345 Conkal, Yucatán, Mexico.

5 Laboratorio de Análisis Espacial de Zonas Costeras, Sierra Papacal, CP 97315, Yucatán, Mexico.


An Octopus briareus specimen was recorded off Port Sisal, Yucatán, Mexico. This finding represents the first record of O. briareus in the southern Gulf of Mexico, expanding the currently known westernmost distribution area for this species on the American continent. The specimen was captured by scientific divers performing routine maintenance at underwater facilities in the area of the discovery. The collected specimen was an adult female weighing 25.3 g. The presence of O. briareus could be related to changes in the environmental conditions in the Caribbean Sea and the Gulf of Mexico.

Key words: Octopus briareus; Gulf of Mexico; expansion; distribution


Se registró un espécimen de Octopus briareus frente al puerto de Sisal, Yucatán, México. Este hallazgo representa el primer registro de O. briareus en aguas del sur del golfo de México, lo cual expande el área de distribución más occidental actualmente reconocida para esta especie en el continente americano. El espécimen fue capturado por buzos científicos que realizaban tareas de mantenimiento de rutina en instalaciones submarinas en el área del descubrimiento. El espécimen recolectado fue una hembra adulta que pesaba 25.3 g. La presencia de O. briareus podría estar relacionada con cambios en las condiciones ambientales del mar Caribe y el golfo de México.

Palabras clave: Octopus briareus; golfo de México; expansión; distribución


British zoologist Guy Colborn Robson described the Caribbean reef octopus, Octopus briareus, in 1929 (Robson 1929a). Like other cephalopods, this species is capable of changing its color to instantly mimic its surroundings, although its natural coloration is speculated to be a combination of colors between blue and green with brown spots (Snyderman and Wiseman 1996). The species has large prominent eyes, usually surrounded by very dark rings, and very long arms equivalent in length to 5 times that of the mantle (Kaplan 1999). Males and females are similar in appearance, but males have a modified arm (hectocotylus) that is essential for reproduction (Hanlon and Messenger 1996).

Current knowledge concerning the biological and ecological aspects of O. briareus is very limited, but the spatial distribution of this species is known to extend from southern Florida (USA) and the West Indies (Central America) to the northern coast of South America (Aronson 1986, Cervigón et al. 1992, Jereb et al. 2014, Kaschner et al. 2019) (Fig. 1). It has been suggested that the O. briareus distribution range could include the southern Gulf of Mexico (Robson 1929b, Pickford 1945, Hanlon 1983, Voss et al. 1998), but there is no formal record of the presence of this species there to date.

Figure 1 Octopus briareus distribution (Kaschner et al. 2019) along the Caribbean Sea and the northern coast of South America and location of the new recording off Port Sisal, Yucatan, Mexico. 

Since the early 2000s, the Caribbean Basin and the Atlantic Ocean (typical distribution areas for O. briareus) have shown increasing trends in sea surface temperatura (SST) (Nurse and Charlery 2016). Sheppard and Rioja-Nieto (2005) estimated an upward trend in SST for the Caribbean that is consistent with global trends. Jury (2011) described a positive trend for SST off the Antilles, suggesting accelerated warming in recent years, and Lluch-Cota et al. (2013) reported an average increasing trend in the range of 0.05-0.27 ºC per decade for SST in the southeastern Gulf of Mexico and the western Caribbean Sea. Warming trends are likely to affect marine organisms in different ways (migration, gametogenesis, spawning) (Chollett et al. 2012). Changes in the phenology and distribution of marine species, including cephalopods, in response to recent changes in temperature have already been reported in different parts of the world (Philippart et al. 2003, Weishampel et al. 2004, Poloczanska et al. 2016).

Here, we describe the first record of a female Caribbean reef octopus, O. briareus, in the southern Gulf of Mexico (Yucatán Peninsula), formally expanding the species’ known distribution on the American continent. We also discuss the possible cause of the movement of the species.


Study area

The Gulf of Mexico (Fig. 1) is a small, semiclosed ocean basin with tropical marine currents that occupies 1.5 million square kilometers (Bryant et al. 1991, Salvador 1991). It is part of the circulation of the Atlantic Ocean channeling the transport of heat, salt, nutrients, and biological material from the Caribbean Sea to the North Atlantic. It also plays an important role in defining the weather and climate of Central America, the United States of America, and the Caribbean Sea (Muller-Karger et al. 2015). Clear and warm surface waters from the Caribbean Sea enter the basin via the Yucatán Current, forming the Loop Current and the rings that derive from it (Candela et al. 2003, Schmitz et al. 2005, Smith et al. 2014). Six bodies of water have been detected in the Gulf of Mexico, four of external origin, stemming from the inherent relationship with the Atlantic Ocean and introduced into the Gulf of Mexico by the Yucatán-Lazo current system (Vidal et al. 1991), and two known as the 18 ºC wáter mass, detected in the northern subtropical region of the Gulf of Mexico, and the common gulf water, detected throughout practically the entire gulf.

Specimen collection

The O. briareus specimen was collected on 8 August, 2019, at 12:20 PM, in a location 14 km out from Port Sisal, Yucatán, Mexico (21º13.263´N, 90º10.045´W) (Fig. 1). The discovery was made by scientific divers performing routine work at underwater facilities located in the area. Following its collection, the organism was transferred alive to the cephalopod culture laboratory in the Unidad Multidisciplinaria de Docencia e Investigación at the Universidad Nacional Autónoma de México, at Sisal, in a termal container with 20 L of seawater. Since there was no oxygenation equipment, and to avoid stressing the animal, the seawater in the container was changed twice during the trip. The octopus was identified following the method proposed by Robson (1929b). The trip to the laboratory was made in a 14-m long boat with two 115-hp outboard motors; approximate trip time is 28 min under optimal navigation conditions.


An O. briareus specimen was collected off Port Sisal, Yucatán, Mexico. The organism was an adult female with the following morphometrics: weight = 25.3 g, total length = 20.8 cm, mantle length = 3.7 cm, length of longest arm = 17.1 cm, and eye circumference = 2.1 cm (Fig. 2). The Discovery was made in an area with depth down to 9.7 m, temperatura of 24.0 ºC and visibility up to 12.0 m; the ocean floor in this location was mainly composed of brown algae and medium sand.

Figure 2 (a) Photograph of the Octopus briareus (Robson 1929) specimen captured off Port Sisal, Yucatan, Mexico. (b) Three-dimensional representation and main morphometric characters of the captured specimen. 


The discovery of this O. briareus specimen is interesting because it suggests that the species could be expanding its westernmost distribution range to areas in the Gulf of Mexico. We could put forward 2 hypotheses. The first is that given the tolerance of O. briareus embryos to high temperaturas (unpublished data) and the climatic changes that have occurred in the area, the species has expanded its distribution because environmental conditions have been favorable. This distribution expansion may have been induced by SST anomalies in the Caribbean, which have been of greater intensity in recent years (Foltz et al. 2018, Varela et al. 2018, Jury 2019). The geographical expansion of various cephalopod species around the world has been documented, with changes in SST being suggested as possible causes (Table 1). Increased SST is also known to be related to coral bleaching and ocean acidification (Nurse and Charlery 2016), and these phenomena could cause massive habitat loss for this and other species. Allcock and Headlam (2018) suggested that even with its wide distribution range, O. briareus could be at risk given the long-term future theoretical threat from global warming. This species, like many other cephalopods, is very sensitive to environmental changes and is thus considered a good indicator of the present oceanographic conditions (Puerta et al. 2015, Zaragoza et al. 2015). The second hypothesis is that the species has always inhabited the area, but given its low abundance, it had never been seen before. A combination of both hypotheses could be that O. briareus abundance is increasing and its distribution is expanding westward into the Gulf of Mexico because environmental conditions could now be favorable.

Table 1 Geographical expansions of cephalopods associated with changes in sea temperature. 

Order Scientific name Geographical location of new
Possible cause of geographical
Octopoda Muusoctopus eureka 052º853.4′ S, 060º802.2′ W Temperature increases in the epipelagic
and mesopelagic layers in the southern
Laptikhovsky et al. (2011)
Decapoda Ommastrephes bartramii 36º0′1″ N, 25º4′15″ E Association between the distribution
of the species and the circulation of the
warm intermediate waters of the Levan-
tine Sea.
Lefkaditou et al. (2011)
Octopoda Octopus hubbsorum 24º37′ N, 112º07′ W The species could possess physiological
adaptations that allow it to optimally ex-
plore temperate regions.
Domínguez-Contreras et al. (2013)
Decapoda Thysanoteuthis rhombus 16.103º N, 95.278º W Waters with high seasonal productivity
and low temperature, associated with an
upwelling zone in eastern Pacific waters
off Mexico.
Alejo-Plata and Urbano-Alonso (2018)
Octopoda Hapalochlaena fasciata 33º30'34.99" N 126º31'18.98" E The temperature increase in the Sea of
Japan has contributed to a slow north-
ward change in the distribution.
Kim et al. (2012, 2018)

Octopus briareus is an organism that does not have larval stages and has accelerated growth rate, early sexual maturation, and a short life cycle (Robaina 1983). Furthermore, given its nocturnal habits, it is probably not a competing species for the Mexican four-eyed octopus, Octopus maya, an endemic species that is homogeneously distributed along the northern and western continental shelf of the Yucatán Peninsula, Mexico (Gamboa-Álvarez et al. 2015).

In addition to our record, octopi in the genus Tremoctopus, deep-water animals never before sighted by local people, have reportedly been caught recently by multiple artesanal fishermen in the northeastern Yucatán Peninsula. We therefore suggest that cephalopod biodiversity studies be conducted on the coasts of Yucatán and Campeche, Mexico, in order to update the lists of species inhabiting these areas. We also suggest sampling artisanal catches to assess whether these types of captures are incidental or indicate a change in species composition on the continental shelf of the Yucatán Peninsula.


We are thankful for the financial support provided by Universidad Nacional Autonoma de Mexico (DGAPA-PAPIIT, IN223418). MAGA thanks the Mexican National Council for Science and Technology for the scholarship granted to carry out graduate studies.


Alejo-Plata MC., Urbano-Alonso B. 2018. The finding of diamond squid Thysanoteuthis rhombus in the Gulf of Tehuantepec, Northeastern Tropical Pacific = El hallazgo del calamar diamante Thysanoteuthis rhombus en el Golfo de Tehuantepec, Pacífico tropical noreste. Hidrobiológica. 28(1):147-150. [ Links ]

Allcock L., Headlam J. 2018. Octopus briareus. The IUCN Red List of Threatened Species 2018: e.T163175A980439. Accessed 2019 Aug 26. [ Links ]

Aronson RB. 1986. Life history and den ecology of Octopus briareus Robson in a marine lake. J Exp Mar Biol Ecol. 95(1):37-56. [ Links ]

Bryant WR., Lugo J., Córdova C., Salvador A. 1991. Physiography and bathymetry. In: Salvador A. (ed.), The Geology of North America. The Gulf of Mexico Basin. Vol. J., Boulder (CO): The Geological Society of America. p. 13-30. [ Links ]

Candela J., Tanahara S., Crepon M., Barnier B., Sheinbaum J. 2003. Yucatan Channel flow: observations versus CLIPPER ATL6 and MERCATOR PAM models. J Geophys Res. 108(C12):1-24. [ Links ]

Cervigón F., Cipriani R., Fischer W., Garibaldi L., Hendrickx M., Lemus AJ., Márquez R., Poutiers JM., Robaina G., Rodriquez B. 1992. Guía de campo de las especies comerciales marinas y de aguas salobres de la costa septentrional de Sur América [Field Guide to Commercial Marine and Brackish Water Species of the Northern Coast of South America]. Rome (Italy): Food and Agriculture Organization of the United Nations. p. 94-101. [ Links ]

Chollett I., Müller-Karger FE., Heron SF., Skirving W., Mumby PJ. 2012. Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Mar Pollut Bull. 64(5):956-965. [ Links ]

Domínguez-Contreras JF., Ceballos-Vázquez BP., Hochberg FG., Arellano-Martínez M. 2013. A new record in a well-established population of Octopus hubbsorum (Cephalopoda: Octopodidae) expands its known geographic distribution range and maximum size. Am Malacol Bull. 31(1):95-99. [ Links ]

Foltz GR., Balaguru K., Hagos S. 2018. Interbasin differences in the relationship between SST and tropical cyclone intensification. Mont Weather Rev. 146(3):853-870. [ Links ]

Gamboa-Álvarez MÁ., López-Rocha JA., Poot-López GR. 2015. Spatial analysis of the abundance and catchability of the red octopus Octopus maya (Voss and Solís-Ramírez, 1966) on the continental shelf of the Yucatan Peninsula, Mexico. J Shellfish Res. 34(2):481-492. [ Links ]

Hanlon RT. 1983. Octopus briareus. In: Boyle PR., (ed.), Cephalopod Life Cycles. London (UK): Academic Press. p. 251-266. [ Links ]

Hanlon RT., Messenger JB. 1996. Cephalopod behaviour. Cambridge (UK): Cambridge University Press. 232 p. [ Links ]

Jereb P., Roper CFE., Norman MD., Finn JK. 2014. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Vol. 3, Octopods and Vampire Squids. FAO species catalogue for fishery purposes. No. 4, Vol. 3. Rome (Italy): Food and Agriculture Organization of the United Nations. 370 p. [ Links ]

Jury MR. 2011. Long-term variability and trends in the Caribbean Sea. Int J Oceanogr. 2011:465810. [ Links ]

Jury MR. 2019. Factors underlying changes in salinity around the southeastern Antilles. J Mar Syst. 199:103208. [ Links ]

Kaplan EH. 1999. A field guide to coral reefs: Caribbean and Florida. Boston: Houghton Mifflin Harcourt. 273 p. [ Links ]

Kaschner K., Kesner-Reyes K., Garilao C., Segschneider J., Rius- Barile J., Rees T., Froese R. 2019. AquaMaps: Predicted range maps for aquatic species. [Place unknown]: AquaMaps; accessed 2020 May 30. . Version 10/2019. [ Links ]

Kim HS., Kwun HJ., Bae H., Park J. 2018. First reliable record of the blue-lined octopus, Hapalochlaena fasciata (Hoyle, 1886) (Cephalopoda: Octopodidae), from Jeju Island, Korea. J Asia Pac Biodivers. 11(1):21-24. [ Links ]

Kim JH., Suzuki T., Shim KB., Oh EG. 2012. The widespread distribution of the venomous and poisonous blue-lined octopus Hapalochlaena spp., in the East/Japan Sea: Possible effects of sea warming. Fish Aquatic Sci. 15(1):1-8. [ Links ]

Laptikhovsky V., Arkhipkin A., Brickle P., Hearne S., Neely K. 2011. Species range shifts due to environmental changes in scaled squid, Pholidoteuthis massyae and bathyal octopus, Muusoctopus eureka. Mar Biodivers Rec. 4:e34. [ Links ]

Lefkaditou E., Peristeraki P., Chartosia N., Salman A. 2011. Recent findings of Ommastrephes bartramii (Cephalopoda: Ommastrephidae) in the eastern Mediterranean and the implication on its range expansion. Mediterr Mar Sci. 12(2):413-428. [ Links ]

Lluch-Cota SE., Tripp-Valdez M., Lluch-Cota DB., Lluch-Belda D., Verbesselt J., Herrera-Cervantes H., Bautista-Romero JJ. 2013. Recent trends in sea surface temperature off Mexico. Atmósfera. 26(4):537-546. [ Links ]

Muller-Karger FE., Smith JP., Werner S., Chen R., Roffer M., Liu Y., Muhling B., Lindo-Atichati D., Lamkin J., Cerdeira-Estrada S., et al. 2015. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog Oceanogr. 134:54-76. [ Links ]

Nurse LA., Charlery JL. 2016. Projected SST trends across the Caribbean Sea based on PRECIS downscaling of ECHAM4, under the SRES A2 and B2 scenarios. Theor Appl Climatol. 123(1-2):199-215. [ Links ]

Philippart CJM., van Aken HM., Beukema JJ., Bos OG., Cadée GC., Dekker R. 2003. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol Oceanogr. 48(6):2171-2185. [ Links ]

Pickford GE. 1945. Le poulpe Américain: A study of the littoral Octopoda of the Western Atlantic. Trans Conn Acad Arts Sci. 36:701-811. [ Links ]

Poloczanska ES., Burrows MT., Brown CJ., García-Molinos J., Halpern BS., Hoegh-Guldberg O., Kappel CV., Moore PJ., Richardson AJ., Schoeman DS., et al. 2016. Responses of marine organisms to climate change across oceans. Front Mar Sci. 3:62. [ Links ]

Puerta P., Hunsicker ME., Quetglas A., Álvarez-Berastegui D., Esteban A., González M., Hidalgo M. 2015. Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the western Mediterranean Sea. PLOS ONE. 10(7):e0133439. [ Links ]

Robaina GO. 1983. Sobre el cultivo y mantenimiento de Octopus briareus Robson 1929 (Cephalopoda: Octopoda). [On the cultivation and maintenance of Octopus briareus Robson 1929 (Cephalopoda: Octopoda)]. Isla de Margarita (Venezuela): Centro de Investigaciones Científicas de la Universidad de Oriente. 20 p. [ Links ]

Robson GC. 1929a. A Monograph of the Recent Cephalopoda based on the collections in the British Museum (Natural History). Part I Octopodinae. London (UK): British Museum (Nat. Hist.). [ Links ]

Robson GC. 1929b. Notes on the Cephalopoda. IX: Remarks on Atlantic Octopoda andc. in the Zoölogische Museum, Amsterdam. Ann Mag Nat Hist Series 10. 3(18):609-618. [ Links ]

Salvador A. 1991. Origin and development of the Gulf of Mexico Basin. In: Salvador A. (ed.), The Geology of North America. The Gulf of Mexico basin Vol. J. Boulder (CO): The Geological Society of America. p. 389-444. [ Links ]

Schmitz WJ. Jr. , Biggs DC., Lugo-Fernández A., Oey LY., Sturges W. 2005. A synopsis of the circulation in the Gulf of Mexico and on its Continental Margins. In: Sturges W., Lugo-Fernandez A., (eds.), Circulation in the Gulf of Mexico: Observations and Models. Geophysical Monograph Ser. Vol. 161. Florida (USA): AGU Books. p. 11-31. [ Links ]

Sheppard C., Rioja-Nieto R. 2005. Sea surface temperature 1871- 2099 in 38 cells in the Caribbean region. Mar Environ Res. 60(3):389-396. [ Links ]

Smith RH., Johns EM., Goni GJ., Trinanes J., Lumpkin R., Wood AM., Kelble CR., Cummings SR., Lamkin JT., Privoznik S. 2014. Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill. Cont Shelf Res. 77(1):118-131. [ Links ]

Snyderman M., Wiseman C. 1996. Guide to marine life: Caribbean, Bahamas, Florida. New York: Aqua Quest Publications Inc. 284 p. [ Links ]

Varela R., Lima FP., Seabra R., Meneghesso C., Gómez-Gesteira M. 2018. Coastal warming and wind-driven upwelling: A global analysis. Sci Total Environ. 639:1501-1511. [ Links ]

Vidal VMV., Vidal FV., Hernández OAF. 1991. Atlas Oceanográfico del Golfode México. Vol 3, Circulaciónytransportes baroclínicos, hidrografía, distribución de masas de agua y propiedades cinemáticas de pares ciclones-anticiclones durante octubre de 1986. Cuernavaca (Morelos, México): Instituto de Investigaciones Eléctricas, Grupo de Estudios Oceanográficos. 586 p. [ Links ]

Voss NA., Vecchione M., Toll RB., Sweeney MJ. 1998. Systematics and Biogeography of Cephalopods. Vol. II. Smithsonian Contributions to Zoology. 586:277-599. [ Links ]

Weishampel JF., Bagley DA., Ehrhart LM. 2004. Earlier nesting by loggerhead sea turtles following sea surface warming. Glob Chang Biol. 10(8):1424-1427. [ Links ]

Zaragoza N., Quetglas A., Hidalgo M., Álvarez-Berastegui D., Balbín R., Alemany F. 2015. Effects of contrasting oceanographic conditions on the spatiotemporal distribution of Mediterranean cephalopod paralarvae. Hydrobiologia. 749(1):1-14. [ Links ]

Received: March 01, 2020; Accepted: June 01, 2020

* Corresponding author. E-mail:

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License