SciELO - Scientific Electronic Library Online

 
vol.41 número3Biopelícula de algas epífitas y hongos en plantaciones forestales de pinabete (Abies guatemalensis) en GuatemalaSilenciamiento génico inducido por el vector EuMY-YP∆CHS4 durante la interacción Fusarium sp.-Nicotiana benthamiana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de fitopatología

versión On-line ISSN 2007-8080versión impresa ISSN 0185-3309

Rev. mex. fitopatol vol.41 no.3 Texcoco sep. 2023  Epub 13-Oct-2023

https://doi.org/10.18781/r.mex.fit.2305-1 

Scientific articles

Effect of adjuvants, fungicides and insecticides on the growth of Trichoderma koningiopsis Th003

Yimmy Alexander Zapata-Narváez*  1 

Blanca Lucia Botina-Azain1 

1 Corporación Colombiana de Investigación Agropecuaria -Agrosavia. Centro de Investigación Tibaitatá - Km 14 Vía Mosquera, Cundinamarca-Colombia.


Abstract.

The effect of 44 agrochemicals (fungicides, insecticides and adjuvants) on the mycelial growth and germination conidia of Trichoderma koningiopsis Th003 was determined by seeding of 5 mm discs of fungal mycelium in Sabouraud agar supplemented with each agrochemical and seeding of conidia suspended in solutions of agrochemicals in water agar. For the adjuvants, their effect on the phyllospheric establishment of T. koningiopsis Th003 was determined by following their population in cape gooseberry leaflets inoculated with the fungus suspended in them. Eight fungicides did not inhibit the fungus mycelial growth or the conidia germination. Fenhexamid - Tebuconazole, Flutriafol and Kasugamicina inhibited it between 34 and 48% without affecting germination, Thiram - Pyrimethanil, Prochloraz, Tiabendazol, Spiroxamina and Triadimenol - Tebuconazole inhibited the growth and Thiram - Pyrimethanil and Dodine did not allow conidia germination. Insecticides and adjuvants presented an inhibition of up to 70% but did not affect the conidia germination. No negative effects of the adjuvants on the phyllosphere establishment of T. koningiopsis Th003 were observed, recovering from the treatments approximately 1x103 CFU g-1.

Keywords: Inhibition; germination; phyllosphere; resistance; tolerance

Resumen.

Se determinó el efecto de 44 agroquímicos (fungicidas, insecticidas y coadyuvantes) sobre el crecimiento micelial y la germinación de conidios de Trichoderma koningiopsis Th003, mediante siembra de discos de 5 mm de micelio hongo en agar Sabouraud suplementado con cada agroquímico y la siembra de conidios suspendidos en soluciones de los agroquímicos en agar agua. Para los coadyuvantes, se determinó su efecto en el establecimiento filosférico de T. koningiopsis Th003 siguiendo su población en foliolos de uchuva inoculados con el hongo suspendido en estos. Ocho fungicidas no inhibieron el crecimiento micelial del hongo o la germinación de sus conidios. Fenhexamid - Tebuconazol, Flutriafol y Kasugamicina lo inhibieron entre un 34 y 48% sin afectar la germinación, mientras que Thiram - Pirimetanil, Procloraz, Tiabendazol, Spiroxamina y Triadimenol - Tebuconazol inhibieron el crecimiento y Thiram - Pirimetanil y Dodine no permitieron la germinación de los conidios. Insecticidas y coadyuvantes presentaron una inhibición de hasta el 70% pero no afectaron la germinación de los conidios. No se observaron efectos negativos de los coadyuvantes en el establecimiento de T. koningiopsis Th003 en la filosfera, recuperando de los tratamientos aproximadamente 1x103 UFC g-1.

Palabras clave: Inhibición; germinación; filosfera; resistencia; tolerancia

Current agricultural production requires efficient alternatives for pest and disease control that contribute to sustainability within integrated crop management schemes. Additionally, the demands of a globalized market, such as certifications in Good Agricultural Practices like Global G.A.P or Rainforest Alliance, favor the use of environmentally friendly control methods for sustainable production (Sanderson-Bellamy et al., 2016; Figueredo et al., 2018; Nivelo et al., 2020).

One of these alternatives is the use of biopesticides formulated based on antagonistic microorganisms, which can be integrated into crop management strategies, helping to reduce the number of applications and active ingredients of chemical pesticides used in a crop cycle (Samada and Tambunan, 2020). In Colombia, one example is Tricotec® WG developed by the Colombian Corporation for Agricultural Research - AGROSAVIA. Its active ingredient is conidia of the fungus Trichoderma koningiopsis Th003. This biopesticide is registered by the Colombian Agricultural Institute - ICA for use on lettuce (Lactuca sativa), tomato (Solanum lycopersicum), rice (Oryza sativa), blueberry (Vaccinium corymbosum), strawberry (Fragaria vesca), blackberry (Rubus glaucus), potato (Solanum tuberosum) and ornamentals such as rose (Rosa spp.) to control Botrytis cinerea, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Sclerotinia minor. It has 50-65% efficacy depending on the production system (Moreno et al., 2020).

However, agricultural production is subject to environmental, anthropogenic, and plant biological conditions which, in addition to yield impacts, can determine pest and disease incidence, sometimes occurring simultaneously.

Therefore, in addition to biopesticides, it is necessary to use chemically synthesized pesticides (whose suspensions or solutions are usually prepared with the addition of adjuvants that facilitate and improve their application and action) since the former can control one or several targets, but do not have a broad spectrum of action (Samada and Tambunan, 2020). For instance, with the applications of Tricotec® WG in rose cultivation, there is control over B. cinerea, but not over Podosphaera pannosa or Peronospora sparsa. For these pathogens, it is necessary to apply fungicides that control them (Debener and Byrne, 2014).

With this in mind, the objective of this work was to determine the effect of adjuvants, fungicides and insecticides used in production systems in which Tricotec® WG is registered for use, on the growth and conidia germination of T. koningiopsis Th003, as well as the effect of the adjuvants on the establishment of the fungus in the phyllosphere (as they are widely used agrochemicals for improving the activity of fungicides and insecticides) with a view to generating recommendations for use according to their potential compatibility with agrochemicals.

Materials and methods

This work was carried out at the Agricultural Microbiology Laboratory of the Tibaitatá Research Center of the Colombian Agricultural Research Corporation - AGROSAVIA.

Microorganism. To evaluate the effect of agrochemicals on the mycelial growth and germination of T. koningiopsis Th003, fungal cultures that had grown for seven and 10 days were used. These cultures were derived from the inoculation of a granule of the biopesticide Tricotec® WG onto potato dextrose agar (PDA) (Oxoid CM0139). Meanwhile, to assess the influence of adjuvants on the fungus’s establishment in the phyllosphere, the commercial form of the biopesticide was utilized.

Agrochemicals evaluated. Twenty-seven fungicides used in crops for which Tricotec® WG is registered for use, 10 insecticides and 7 agricultural adjuvants were evaluated at the highest use dose reported in the technical data sheet of each agrochemical (Tables 1, 2 and 3).

Table 1 Technical information for the fungicides evaluated for their effect on the growth of Trichoderma koningiopsis Th003. 

Fungicida Grupo químico Dosis Mecanismo de acción Fitopatógeno blanco
Mandipropamid Amidas del ácido mandélico 1 mL L-1 Inhibe la síntesis de la pared celular en oomicetes Phytophthora infestans - Peronospora destructor - Peronospora sparsa -Plasmopara viticola -Peronospora pissi
Dimetomorf Amidas del ácido cinámico 0.8 g L-1
Kasugamicina Antibiótico aminoglucósido 1.5 mL L-1 Inhibe la incorporación de aminoácidos a la síntesis de proteínas Cercospora apii - Septoria sp. - Venturia inaequalis - Sphaerotheca fuliginea
Fluazinam Fenil piridinaminas 1 mL L-1 Afecta la fosforilación oxidativa de las mitocondrias, inhibe la germinación de esporas, formación de apresorios y crecimiento micelial Botrytis cinerea - Colletotrichum lindemuthianum - Phytophthora infestans
Spiroxamina Spiroketalaminas 0.6 g L-1 Inhibe la síntesis de los esteroles Leveillula taurica - Stemphylium vesicarium - Uncinula necator
Dodine Guanidina 1.6 mL L-1 Disolución del estrato lipídico de la membrana llevando a la deshidratación de la célula Heterosporium echinulatum - Sphaerotheca pannosa - Botrytis cinerea - Mycosphaerella fijiensis - Hemileia vastatrix
Iminoctadine Tris (Albesilate) di-guanidine 0.75 cml L-1 Inhibe la síntesis de lípidos, la germinación de esporas, la elongación del tubo germinal y formación del apresorio Botrytis cinerea - Sphaerotheca pannosa
Tiabendazol Benzimidazoles 0.9 mL L-1 Inhibe la división celular a nivel de formación de tubulina Botrytis cinerea - Cercospora apii - Lasiodiplodia theobromae - Sclerotium cepivorum - Colletotrichum gloeosporioides - Penicillium digitatum
Ciazofamida Cianoimidazoles 0.2 mL L-1 Inhibidor de la respiración Phytophthora infestans A1 - Bremia lactucae - Peronospora farinosa f. sp. spinaciae - Pseudoperonospora cubensis - Peronospora destructor - Pythium ultimum
Procloraz Imidazol 1.2 mL L-1 Inhibe la síntesis del ergosterol. Botrytis cinerea - Colletotrichum gloeosporioides -Colletotrichum lindemuthianum - Alternaria solani - Cladosporium echinulatum
Himexazol Isoxazoles 2 mL L-1 Inhibición del crecimiento interfiriendo en la síntesis del ADN y ARN. Lasiodiplodia theobromae - Gaeumannomyces graminis
Flutriafol Triazol 0.8 mL L-1 Alteración de la síntesis del ergosterol, por la inhibición de la demetilación del esteroide Alternaria porri - Alternaria solani - Sphaerotheca pannosa - Heterosporium echinulatum- Puccinia horiana - Hemileia vastatrix - Helminthosporium oryzae - Sarocladium oryzae - Cercospora oryzae - Pyricularia grisea - Colletotrichum lindemuthianum -Colletotrichum gloeosporioides - Phakopsora pachyrhizi - Mycosphaerella fijensis
Hexaconazole Triazol 1 mL L-1 Anti-esporulante, inhibidor de la síntesis de esteroles - ergosterol alterando la estructura y función de la membrana celular Erysiphe polygoni - Hemileia vastatrix - Puccinia pitteriana - Sphaerotheca pannosa
Propiconazole Triazol 1.25 mL L-1 Inhibe la síntesis del ergosterol y esteroles Helminthosporium sp. - Cercospora oryzae
Triadimenol -Tebuconazole Triazol 1 mL L-1 Inhibe la síntesis del esterol y ergosterol Leveillula taurica - Pyricularia oryzae - Hemileia vastatrix - Puccinia asparagi - Podosphaera leucotricha - Alternaria solani - Lasiodiplodia theobromae - Uncinula necator
Tebuconazole -Trifloxystrobin Triazol - Estrobina 1 mL L-1 Inhibe la síntesis de esterol y detiene el transporte de electrones en la cadena respiratoria Pseudocercospora purpurea - Alternaria solani - Ramularia gossypii - Curvularia spp. - Rhizoctonia solani - Helminthosporium spp - Colletotrichum spp
Azoxistrobina-Difenoconazole Estrobilurina - Triazol 1.25 mL L-1 Azoxystrobin inhibe la respiración mitocondrial evitando la formación de energía (ATP), inhibe la germinación de esporas. Difenoconazole inhibe la síntesis del ergosterol. Alternaria porri - Alternaria solani - Colletotrichum lindemuthianum - Rhizoctonia solani - Helminthosporium oryzae - Colletotrichum gloeosporioides - Botrytis cinerea - Sphaerotheca pannosa
Fenhexamid + Tebuconazole Hidroxianilidas - Triazol 2 mL L-1 Inhibe la formación del tubo germinal y síntesis de ergosterol Botrytis cinerea
Propamocarb - Fenamidona Carbamatos - Imidazol 2 mL L-1 Fenamidone inhibe la respiración y formación de esporas. Propamocarb tiene acción antiesporulante e inhibe la síntesis de fosfolípidos y ácidos grasos. Peronospora viciae - Phytophthora infestans - Peronospora destructor - Pseudoperonospora cubensis - Peronospora sparsa
Fenamidone - Fosetyl-Al Imidazol - Organofosforado 1 g L-1 Interfiere en el proceso de respiración celular a nivel de mitocondrias y en la formación de ATP. Peronospora sparsa
Fosetil - Propamocarb Etil fosfonatos - Carbamatos 2.5 mL L-1 Inhibe la germinación, el crecimiento del micelio y esporulación. Pythium spp - Phytophthora spp - Phytophthora parasitica - Peronospora sparsa
Fluopicolide + Propamocarb Acylpicolides - Carbamatos 2 mL L-1 Altera las espectrinas perturbando la estructura celular, afectando la estabilidad del cito esqueleto con la posterior muerte. Bremia lactucae - Peronospora destructor - Peronospora sparsa - Pseudoeronospora cubensis - Phytophthora capsici - Phytophthora infestans - Phytophthora palmivora
Pyrimethanil -Iprodione Pirimidina - Dicarboximidas 1 mL L-1 Pyrimethanil inhibe la secreción de enzimas. Iprodione inhibe la germinación, elongación del tubo germinal, producción de conidios y crecimiento micelial Botrytis cinerea
Fluopyram + Pyrimethanil Piridiniletilbenzamidas - Pirimidina 1 mL L-1 Inhibidor del succinato deshidrogenasa actuando en la cadena respiratoria e inhibe la secreción de enzimas. Botrytis cinerea - Cladosporium spp. - Mycosphaerella fijiensis
Fludioxonil + Ciprodinil Fenilpirroles - Pirimidina 0.6 g L-1 Ciprodinil afecta la síntesis de metionina y la secreción de enzimas hidrolíticas. Fludioxonil inhibe la proteína kinasa en la ruta de transducción de la señal de osmosensibilidad Botrytis cinerea
Thiram + Pyrimethanil Ditiocarbamato - Pirimidina 2 mL L-1 Inhibe la secreción de enzimas hidrolíticas, la germinación de esporas y el crecimiento micelial Botrytis cinerea
Metalaxil-M - Mancozeb Anilida - Ditiocarbamatos 3 g L-1 Inhibe la respiración y la germinación de las esporas Plasmopara viticola - Peronospora sparsa - Phytophthora infestans

The information contained in this table comes from the technical data sheets of the suppliers of the commercial products.

Table 2 Technical information for the insecticides evaluated for their effect on the growth of Trichoderma koningiopsis Th003. 

Insecticida Grupo químico Dosis Mecanismo de acción Patógeno blanco
Spinosad Naturalite 0.5 mL L-1 Actúa por contacto e ingestión, causando parálisis. Activa el receptor de la acetilcolina nicotínica, en diferente sitio que la nicotina o imidacloprid. Frankliniella occidentalis - Liriomyza spp. - Thrips palmi - Tuta absoluta - Spodoptera frugiperda
Dinotefuran Neonicotinoides 0.5 mL L-1 Interfiere la neurotransmisión a través de los receptores nicotínicos. Frankliniella occidentalis - Oebalus insularis
Sulfoxaflor Sulfoxaminas 1 mL L-1 Neurotóxico trabaja en el sistema nervioso central en los receptores nicotínicos de acetilcolina generado excitación generalizada, parálisis, postración y finalmente la muerte de las plagas. Collaria sp. - Trialeurodes vaporariorum - Trialeurodes vaporariorum - Empoasca kraemer - Aphis gossypii -Bemisia tabaci - Oebalus poecilus - Diaphorina citri Kuwayama
Spiromesifen Derivados del ácido tetrónico (ketoenoles) 0.5 mL L-1 Interfiere con la síntesis de lípidos, afectando el desarrollo y fecundidad. Oligonychus yothersi - Trialeurodes vaporariorum - Bemisia tabaci - Tetranychus urticae -
Malathion Organofosforados 1mL L-1 Inhibidor de la acetilcolinesterasa Frankliniella occidentalis - Anthonomus grandis - Thrips tabaci - Trialeurodes vaporariorum - Collaria scenica
Beta-cyfluthrin + Imidacloprid Neonicotinoide - Piretroide 1 mL L-1 Se une en forma postsináptica a los receptores nicotinérgicos y afecta el canal del sodio, en el sistema nervioso. Premnotrypes vorax - Trialeurodes vaporariorum -Anthonomus grandis - Eutheola bidentata - Spodoptera frugiperda - Oebalus poecilus - Thrips tabaci - Thrips palmi - Gryllotalpa hexadactyla - Frankliniella occidentalis - Diaphorina citri
Chlorfenapir Pirroles 0.6 mL L-1 Interrumpe la generación de energía por la liberación y extracción de protones H+ antes de llegar al ATP. Frankliniella occidentalis - Tetranychus urticae - Tuta absoluta (Meyrick)
Metoxifenocide Benzoilhidracina 1 mL L-1 Mimético de la hormona de la muda (ecdisona) que acelera el proceso de muda y con acción ovicida Anticarsia gemmatalis - Rachiplusia nu - Helicoverpa gelotopoeon - Spodoptera frugiperda - Heliothis virescens - Cydia pomonella - Tuta absoluta -Lobesia botrana
Piriproxifen Fenil éter 0.6 mL L-1 Interferencia de la hormona juvenil “HJ” causando la inhibición de metamorfosis, de embriogénesis, de la reproducción, del desarrollo larvario y perturbación de la diapausa Bemisia tabaci - Trialeurodes vaporariorum - Liriomyza sp. - Frankliniella occidentalis -Thrips tabaci - Heliothrips haemorrhoidalis - Bombacoccus aguacatae - Hemiberlesia lataniae - Aspidiotus nerii - Aleuropleurocelus spp.
Permetrina Piretroide 0.6 mL L-1 Interrumpe la función de las neuronas por interacción con los canales de sodio. Spodoptera frugiperda - Epitrix sp. - Tecia solanivora - Plutella xylostella - Tuta absoluta

The information contained in this table comes from the technical data sheets of the suppliers of the commercial products.

Table 3 Technical information for the adjuvants evaluated for their effect on the growth of Trichoderma koningiopsis Th003. 

Nombre comercial Principio activo Dosis
Agrotin® SL Polisacáridos, alcoholes polivinílicos, siliconas 1 mL L-1
HIPOTENSOR SYS Polietilenglicol - Polidimetilsiloxano, fosfatos mono y dipotásicos 1 mL L-1
MF REDUX® Alquil alcohol poliglicol éter 1 mL L-1
Fluyex® Alcohol etoxilado modificado 5 mL L-1
INEX-A® Alquil Polieter Alcohol Etoxilado, Alquil Poliglicol, Aril Polietoxietanol 4 mL L-1
Carrier® Ácidos carboxílicos insaturados y glicéridos saturados 1.5 mL L-1
Bioplant® Aril polietoxietanol - Poliglucósido etoxilado - 1 mL L-1

The information contained in this table comes from the technical data sheets of the suppliers of the commercial products.

Effect of agrochemicals on mycelial growth of T. koningiopsis Th003. Petri dishes were prepared with Dextrose Sabouraud agar (Scharlau 01-165-500) supplemented with each agrochemical, and the same agar without agrochemicals was used as a control. A 5 mm disk of T. koningiopsis Th003 mycelium taken from the fungal culture on PDA was placed in the center of each dish. The Petri dishes were incubated for 120 hours at 25 °C and at the end of this time the diameter of the colonies was read. With the data obtained, the percentage of inhibition was calculated using the formula: Inhibition (%) = ((X - Y) / X) x 100, where X = is the diameter of the colony of T. koningiopsis Th003 in the control dishes, Y = the diameter of the colony of T. koningiopsis Th003 in the dishes supplemented with each of the agrochemicals.

Effect of agrochemicals on the germination of T. koningiopsis Th003 conidia. The conidia were collected from a fungal culture on PDA, making a suspension that was adjusted to a concentration of 1x107 conidia mL-1 using the Neubauer chamber counting technique. Subsequently, 1 mL was taken and transferred to Erlenmeyers flasks containing 20 mL of the solutions of each agrochemical according to the established doses (Tables 1, 2 and 3). The fungal conidia suspended in water were used as a control. The inoculated solutions were left to stand for one hour at 17 °C, simulating the time they could remain in a fumigation equipment during application. Subsequently, 100 μL were taken from each Erlenmeyer and placed in Petri dishes with water agar, spreading them over their surface with a Drigalsky rake. The dishes were incubated for 24 hours at 25 °C and after this, the number of germinated and non-germinated conidia was read by counting 100 conidia on a 1 cm2 agar square, taking three squares from each dish. The germination percentage was determined using the formula: Germination (%) = (Germinated conidia / Total conidia) x 100. A spore was considered as a germinated spore when the length of the germ tube was at least 50% of the length of the non-germinated spore (Muy-Rangel et al., 2018).

Effect of adjuvants on the establishment of T. koningiopsis Th003 in the phyllosphere. Suspensions of Tricotec® WG (at a concentration of 1x106 conidia mL-1) were prepared in solutions of each adjuvant, left to stand for one hour, and then applied to five-month-old cape gooseberry (Physalis peruviana) plants in a field crop. The biopesticide prepared in water at the concentration described above was applied as a control. Seven days later, 10 leaves were taken from the plants and packed in paper bags for analysis in the laboratory. The leaves were cut into 1 cm2 fragments using a sterile stainless steel punch, 10 g were taken and placed in Erlenmeyers with 90 mL of 0.1% Tween 80 (stock suspension) and left in constant agitation at 150 rpm for one hour. Subsequently, a 1:10 dilution was made from each, which was vortexed for 30 seconds. From each stock suspension and dilution, 100 μL were taken and placed in Petri dishes with Rose Bengal + chloramphenicol agar (Oxoid CM0549) (three dishes per dilution), the aliquot was distributed homogeneously with a Drigalsky rake. The dishes were incubated at 25 °C for 5 days, after which colony forming units (CFU) were counted and the results expressed as Log (CFU g-1).

Experimental design and data analysis. The assays were established under a completely randomized experimental design. The experimental unit (EU) corresponded to a Petri dish, with 10 replicates for the evaluation of the effect of agrochemicals on mycelial growth and three replicates for the evaluation of the effect on conidial germination. Data were subjected to analysis of variance and means were compared by Fisher’s LSD test (*= P>0.05) using Statistix 10.0 statistical software.

Results

Effect of agrochemicals on mycelial growth of T. koningiopsis Th003. In experiments testing the impact of fungicides on mycelial growth, no inhibition was observed in the presence of Cyazofamid, Dimethomorph, Fenamidone - Fosetyl-Al, Fosetyl - Propamocarb, Fluopicolide - Propamocarb, Hexaconazole, Mandipropamid, and Propamocarb - Fenamidone. There were no significant differences between these fungicides and the control (Figure 1).

Figure 1 Inhibition of mycelial growth of T. koningiopsis Th003 on Sabouraud agar supplemented with fungicides. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05) 

However, when the fungus encountered a medium containing Flutriafol, Kasugamycin, and Fenhexamid - Tebuconazole, there was a growth inhibition ranging from 34 to 48%. In the presence of Azoxystrobin - Difenoconazole, Dodine, Fluazinam, Fludioxonil - Cyprodinil, Pyrimethanil - Iprodione, Iminoctadine Tris (Albesilate), Himexazole, Propiconazole, and Tebuconazole - Trifloxystrobin, the inhibition ranged from 60 to 79% (Figure 1). While Thiram - Pyrimethanil, Prochloraz, Thiabendazole, Spiroxamine, and Triadimenol -Tebuconazole completely halted the growth of T. koningiopsis Th003 (Figure 1).

In relation to insecticides, only Beta-Cyfluthrin - Imidacloprid Permethrin and Malathion reduced fungal growth, inhibiting it by 23% and 44% respectively. These were also the sole insecticides to exhibit significant differences compared to the control (Figure 2).

Figure 2 Inhibition of mycelial growth of T. koningiopsis Th003 on Sabouraud agar supplemented with insecticides. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05). 

Regarding the adjuvants, Carrier® had no effect on the mycelial growth of T. koningiopsis Th003. However, other adjuvants inhibited growth between 44 and 70%, with Fluyex® showing the maximum inhibition (Figure 3).

Figure 3 Inhibition of mycelial growth of T. koningiopsis Th003 on Sabouraud agar supplemented with adjuvants. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05). 

Effect of agrochemicals on the germination of conidia of T. koningiopsis Th003. In the presence of Dodine, Metalaxyl-M - Mancozeb and Thiram - Pyrimethanil, conidial germination was totally inhibited, while Iminoctadine Tris (Albesilate) only allowed it in 14% and Fluazinam and Plocloraz in 63% (Figure 4). Meanwhile, in the presence of the other fungicides the germination of conidia was ≥ 87%, 13 of them without presenting significant differences with respect to the control.

Figure 4 Germination of T. koningiopsis Th003 conidia exposed to fungicide solutions. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05). 

As for the insecticides, the conidia in the presence of Chlorfenapyr presented a germination of 84%, lower than that obtained with the other insecticides, where a germination of ≥ 97% was obtained, without presenting significant differences with respect to the control (Figure 5). With respect to the adjuvants, five of them presented significant differences with respect to the control; however, germination in the presence of all of them was ≥ 93% (Figure 6).

Figure 5 Germination of conidia of T. koningiopsis Th003 exposed to insecticide solutions. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05). 

Figure 6 Germination of conidia of T. koningiopsis Th003 exposed to adjuvant solutions. Columns with the same letter are not significantly different according to Fisher LSD test (*= P>0.05). 

Effect of adjuvants on the establishment of T. koningiopsis Th003 in the phyllosphere. The highest populations of T. koningiopsis Th003 were recovered in the treatments corresponding to Agrotin® SL and HIPOTENSOR, with means of 3.5 and 3.3 log (CFU g-1) respectively, showing significant differences compared to the other treatments. The control presented a mean of 2.9 log (CFU g-1) and together with Fluyex® and INEX-A®, with means of 2.7 log (CFU g-1), showed the lowest values for recovered populations of the fungus (Figure 7).

Figure 7 Populations of T. koningiopsis Th003 recovered from the cape gooseberry phyllosphere seven days after spraying the biopesticide Tricotec® WG prepared in suspensions of the adjuvants. 

Discussion

The fungicides used for controlling oomycete phytopathogens (Cyazofamid, Dimethomorph, Fenamidone - Fosetyl-Al, Fosetyl - Propamocarb, Fluopicolide - Propamocarb, Hexaconazole, Mandipropamid, Propamocarb - Fenamidone) did not affect mycelial growth or conidial germination of T. koningiopsis Th003 (with the exception of Metalaxyl-M - Mancozeb). Oomycetes have a cell wall consisting of cellulose and sitosterol as membrane lipid (Restrepo et al., 2016), unlike fungi which have chitin and ergosterol (Gow et al., 2017). Since some of these fungicides negatively affect the oomycete cell wall, the lack of cellulose and sitosterol in T. koningiopsis Th003 may explain why they did not inhibit growth.

Meanwhile, other fungicides used against B. cinerea, Colletotrichum sp., Alternaria sp., Helminthosporium sp, or Rhizoctonia solani, inhibited mycelial growth up to 100%, indicating toxic effects. However, only Dodine, Metalaxyl-M - Mancozeb, Thiram - Pyrimethanil and Iminoctadine Tris (Albesilate) affected conidial germination, while with others, germination was less impacted, perhaps due to tolerance as reported for some Trichoderma species against certain fungicides (Escudero-Leyva et al., 2022).

Agrochemicals used as adjuvants and insecticides can stimulate or inhibit mycelial growth as well as the germination of conidia of antagonistic fungi (Rashid et al., 2012; Sain et al., 2022). These effects depend on the chemical properties of the agrochemical, the concentration used, and the biology of the fungus. For example, a study by Sabogal-Vargas et al. (2023) showed that the insecticide chlorpyrifos at concentrations of 960, 1,200 and 1,440 mg L-1 increasingly inhibited mycelial growth of Trichoderma asperellum TCA3, T. asperellum TCA21 and T. harzianum TCA23. However, germination of T. asperellum TCA21 conidia was not inhibited. The inhibition of conidia germination in the other strains was attributed to an accumulation of self-inhibitors of germination, causing a state of dormancy (Sabogal-Vargas et al., 2023).

For some insecticides and adjuvants, the inhibitory effect on mycelial growth but not conidial germination has been related to alteration of the electrostatic charge of the fungal surface and potential elimination of the mucous layer covering the conidia. This may occur by interruption of metabolism in the cell wall and its effect on membrane permeability (Clifford and Hislop, 1975; Rashid et al., 2012; Fait et al., 2019). The active ingredient of the biopesticide is conidia of the fungus. When applied in the phyllosphere suspended in adjuvant solutions, the conidia germinated and the fungus became established despite the presence of adjuvants and insecticides. Consequently, populations of T. koningiopsis Th003 recovered were higher or similar to the control. Thus, both the adjuvants and insecticides evaluated could potentially be applied together with the biopesticide, a condition that also applies to the fungicides that did not affect conidial germination.

The tolerance and resistance of a fungus to fungicides is considered an evolutionary process, where exposure to an active ingredient exerts selection pressure on a population, killing the initial wild population but not the altered mutant population. Thus, overexposure accelerates changes towards tolerant and resistant populations, which have developed mechanisms such as alteration or overexpression of the fungicide target site, detoxification, and exclusion or expulsion from the site of action (FRAC, 2019).

However, the tolerance that T. koningiopsis Th003 showed for some agrochemicals, particularly fungicides, may be innate to the fungus’s metabolism. In the production of the Tricotec® WG biopesticide, the fungus used is not exposed to any agrochemicals, as it comes from a germplasm bank rather than being recovered from the environment. This implies that T. koningiopsis Th003 may possess inherent stress tolerance genes, as reported for other Trichoderma species. It may also produce degradative enzymes or proteins responsible for regulating agrochemical degradation processes, allowing it to tolerate and grow in their presence (Tripathi et al., 2013; Ramangouda et al., 2023).

Conclusions

The fungicides used to control oomycetes (Cyazofamid, Dimethomorph, Fenamidone - Fosetyl-Al, Fosetyl - Propamocarb, Fluopicolide - Propamocarb, Hexaconazole, Mandipropamid, Propamocarb - Fenamidone) did not affect mycelial growth or conidia germination of T. koningiopsis Th003. In contrast, those used against ascomycetes or basidiomycetes showed some inhibition. Mycelial growth was completely inhibited by Thiram - Pyrimethanil, Prochloraz, Thiabendazole, Spiroxamine and Triadimenol -Tebuconazole. Thiram - Pyrimethanil, Dodine and Iminoctadine Tris (Albesilate) also inhibited conidial germination. The insecticides Beta-Cyfluthrin - Imidacloprid, Permethrin and Malathion inhibited mycelial growth but did not affect conidia germination. Most adjuvants inhibited mycelial growth by 44-70% but did not impact conidia germination or fungal establishment on the leaf surface. Carrier® was the exception with no effect. Thus, considering integrated pest management strategies, it is possible to mix adjuvants, insecticides and fungicides that did not inhibit T. koningiopsis Th003 conidia germination with the biopesticide.

Acknowledgement

The authors would like to thank the Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA for funding the project “Adjustment and optimization of bioproducts phase III”, which allowed the development of this work.

Cited literature

Clifford DR and Hislop EC. 1975. Surfactants for the control of apple mildew. Pesticide Science 6(4): 409-418. https://doi.org/10.1002/ps.2780060409 [ Links ]

Debener T and Byrne DH. 2014. Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science 228: 107-117. https://doi.org/10.1016/j.plantsci.2014.04.005 [ Links ]

Escudero-Leyva E, Alfaro-Vargas P, Muñoz-Arrieta R, Charpentier-Alfaro C, Granados-Montero MdM, Valverde-Madrigal KS, Pérez-Villanueva M, Méndez-Rivera M, Rodríguez-Rodríguez CE, Chaverri P and Mora-Villalobos JA. 2022. Tolerance and biological removal of fungicides byTrichodermaspecies isolated from the endosphere of wild rubiaceae Plants. Frontiers in Agronomy 3:772170. https://doi.org/10.3389/fagro.2021.772170 [ Links ]

Fait ME, Bakas L, Garrote GL, Morcelle S and Saparrat M. 2019. Cationic surfactants as antifungal agents. Appl Microbiol Biotechnol 103: 97-112 https://doi.org/10.1007/s00253-018-9467-6 [ Links ]

Figueredo CA, Rincón NS and Salazar NS. 2018. Caracterización del cumplimiento inicial de la Norma Global G.A.P., aplicada a pequeños agricultores de Duitama. Entre Ciencia e Ingeniería 12(23): 32-39. http://dx.doi.org/10.31908/19098367.3700Links ]

Fungicide Resistance Action Committee - FRAC. 2019. Clasificación de fungicidas y bactericidas según el modo de acción. FRAC España 25p. https://fmcagro.es/img/folleto_Clasificaci%C3%B3n%20de%20fungicidas%20y%20bactericidas%20seg%C3%BAn%20el%20modo%20de%20acci%C3%B3nLinks ]

Gow NAR, Latge JP, Munro CA. 2017. The fungal cell wall: Structure, biosynthesis and function. Microbiology Spectrum 5(3): 1-25. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016 [ Links ]

Moreno-Velandia CA, Izquierdo-García LF, Zapata-Narváez YA, Beltrán-Acosta CR and Zuluaga-Mogollón MV. 2020. Tricotec® WG Biofungicida. Recomendaciones de uso y patógenos blanco. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 48 p. http://hdl.handle.net/20.500.12324/36526Links ]

Muy-Rangel MD, Osuna-Valle JR, García-Estrada RS, San Martín-Hernández C, Quintana-Obregón EA. 2017. In vitro antifungal activity of garlic essential oil (Allium sativum L.) against Alternaria tenuissima. Revista Mexicana de Fitopatología 36(1): 162-171. https://doi.org/10.18781/r.mex.fit.1708-3 [ Links ]

Nivelo K, Pacheco A and Pupo J. 2020. Global GAP y su complemento GRASP: Filosofía de Responsabilidad Social Empresarial del Sector Agroalimentario. 593 Digital Publisher CEIT 5(3): 93-111. https://doi.org/10.33386/593dp.2020.3.221 [ Links ]

Ramangouda G, MK Naik, RB Nitnavare, R Yeshvekar, J Bhattacharya, Bhatnagar-Mathur P and Sharma M. 2023. Genetic enhancement ofTrichoderma asperellumbiocontrol potentials and carbendazim tolerance for chickpea dry root rot disease management. PLoS ONE 18(1): e0280064. https://doi.org/10.1371/journal.pone.0280064 [ Links ]

Rashid M, Sheikhi A, Naseri B, Ghazavi M and Barari H. 2012. Compatibility of the entomopathogenic fungus Beauveria bassiana with the insecticides fipronil, pyriproxyfen and hexaflumuron. Journal of Entomological Society of Iran 31(2): 29-37. https://jesi.areeo.ac.ir/article_105469.html?lang=enLinks ]

Restrepo S, Enciso J, Tabima J and Riaño DM. 2016. Evolutionary history of the group formerly known as protists using a Phylogenomics approach. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 40(154): 147-160. https://doi.org/10.18257/raccefyn.277 [ Links ]

Sabogal-Vargas AM, Wilson-Krugg J, Rojas-Villacorta W, De La Cruz-Noriega, M., Otiniano N. M., Rojas-Flores, S., & Mendoza-Villanueva, K. 2023. In vitro compatibility of three native isolates of Trichoderma with the insecticide chlorpyrifos. Applied Sciences 13(2): 811. https://doi.org/10.3390/app13020811 [ Links ]

Sain SK, Monga D, Kranthi S, Hiremani NS, Nagrale DT, Kumar R and Prasad YG. 2022. Evaluation of the bioefficacy and insecticide compatibility of entomopathogens for management of whitefly (Hemiptera: Aleyrodidae) on upland cotton under laboratory and polyhouse conditions. Neotropical Entomology 51(4): 600-612. https://doi.org/10.1007/s13744-022-00964-9 [ Links ]

Samada, LH and Tambunan, US. 2020. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. OnLine Journal of Biological Sciences 20 (2): 66-76. https://doi.org/10.3844/ojbsci.2020.66.76 [ Links ]

Sanderson-Bellamy A, Svensson O, van den Brink P and Tedengren M. 2016. What is in a label? Rainforest-Alliance certified banana production versus non-certified conventional banana production. Global Ecology and Conservation 7: 39-48. https://doi.org/10.1016/j.gecco.2016.05.002 [ Links ]

Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT and Tripathi RD. 2013. Trichoderma: a potential bioremediator for environmental clean-up. Clean Technologies and Environmental Policy 15: 541-550. https://doi.org/10.1007/s10098-012-0553-7 [ Links ]

Received: May 01, 2023; Accepted: August 17, 2023

*Corresponding author: jzapatan@agrosavia.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License