SciELO - Scientific Electronic Library Online

 
vol.40 número3Identificación preliminar y relación filogenética de begomovirus asociados con Capsicum spp. en la península de Yucatán, MéxicoIncidencia de la mano de chango en germoplasma de maíz (Zea mays) en diferentes localidades de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de fitopatología

versión On-line ISSN 2007-8080versión impresa ISSN 0185-3309

Rev. mex. fitopatol vol.40 no.3 Texcoco sep. 2022  Epub 14-Nov-2022

https://doi.org/10.18781/r.mex.fit.2205-5 

Review articles

Biological control perspectives in the pine forest (Pinus spp.), an environmentally friendly alternative to the use of pesticides

Luis Martín Gutiérrez-Flores1 

Lucía López-Reyes2 

Enrique Hipólito-Romero3 

Eduardo Torres-Ramírez4 

Elsa Iracena Castañeda-Roldán5 

Amparo Mauricio-Gutiérrez*  6 

1.1 Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, México;

2 Laboratorio de Microbiología de Suelos, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, México

3 Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Campus USBI, Col. Emiliano Zapata, Xalapa, Veracruz, México;

4 Laboratorio de Bioinorgánica Aplicada, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, México

5 Laboratorio de Patogenicidad Microbiana, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, México

6 Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, México


Abstract

Forests are important for their economic, ecological, and social contribution to humanity. However, there is a decrease in the forest mass due to different causes such as fire, intensive agriculture, overgrazing, air pollution, and the presence of pests and diseases of fungal origin. A practice to deal with diseases caused by fungi has been the application of broad-spectrum, fungicides with negative consequences on the environment. Biological control is an alternative for disease management in pine species. Due to the need to conserve the diversity of pine species, this review addresses issues relevant to the importance of forests in the world, diseases in Pinus spp., fungal control by chemical and biological agents, referring to different biological control mechanisms and the most studied biofungicides such as Trichoderma sp. and Bacillus sp. in Pinus spp. The various scientific reports on the biological control of fungi in different pine species places it as a promising option in reducing the pathogenicity and incidence of fungal diseases with less negative effects on the environment than synthetic pesticides of chemical origin. Therefore, this review aims to transmit information on biological control in pine trees as a friendly alternative for the recovery of forests.

Keywords: Forest health; biocontrol; conservation; fungal diseases

Resumen

Los bosques son importantes por la contribución económica, ecológica y social a la humanidad. Sin embargo, existe disminución de la masa forestal debido a diferentes causas como el fuego, la agricultura intensiva, sobrepastoreo, contaminación atmosférica y la presencia de plagas y enfermedades de origen fúngico. Una práctica para atender a las enfermedades causadas por hongos ha sido la aplicación de fungicidas de amplio espectro, con consecuencias negativas al ambiente. El control biológico es una alternativa para el manejo de enfermedades en especies de pinos. Debido a la necesidad de conservar la diversidad de especies de pino, en esta revisión se abordan temas relevantes a la importancia de los bosques en el mundo, las enfermedades en Pinus spp., el control fúngico por agentes químicos y biológicos, haciendo referencia a diferentes mecanismos de control biológico y los biofungicidas más estudiados como Trichoderma sp. y Bacillus sp. en Pinus spp. Los diversos reportes científicos sobre el control biológico de hongos en diferentes especies de pino, lo coloca como una opción prometedora en la disminución de la patogenicidad e incidencia de las enfermedades fúngicas con menos efectos negativos al ambiente como lo hacen los plaguicidas sintéticos de origen químico. Por lo que, esta revisión tiene como objetivo difundir información sobre el control biológico en plantas de pino como una alternativa amigable para la recuperación de los bosques.

Palabras clave: Sanidad forestal; biocontrol; conservación; enfermedades fúngicas

Forests are natural assets with high environmental value due to their contribution to ecosystems and society. They provide raw materials such as wood and products for food medicine, and fuel. They also provide ecosystem services such as soil erosion protection, oxygen generation, carbon sequestration, regulation of global climatic conditions and biodiversity preservation (FAO, 2011; FAO, 2018). Furthermore, 75% of the freshwater available on the planet comes from hydrographic basins associated with forests (Springgay, 2019). In addition, agroforestry activities provide recreational and tourist activities that can be turned into a source of income (Balvanera, 2012; Brown and Verschuuren, 2018).

An estimated 1000 million people throughout the world depend on forest ecosystems for their subsistence as a direct or indirect source of income. Forests provide more than 580 000 million dollars a year of labor income, as well as 8000 million dollars of non-timber forest products (FAO, 2018; FAO and UNEP, 2020). However, the intensive and unsustainable use of forests, which is associated with fires, intensive agriculture, overgrazing, atmospheric pollution, and the presence of pests and diseases, has caused them to decline (Ken et al., 2020).

In Mexico, despite the efforts made by the forestry sector, only a low proportion of the forested area is subjected to diagnosis and timely detection of pests and diseases. Pesticides, which are applied indiscriminately to keep the phytosanitary conditions below the economic threshold, are another great cause of adverse effects. Most of these products are highly toxic chemical formulations that should be used under pest incidence monitoring and integrated forest systems to avoid affecting the balance of ecosystems. The use of new technologies, such as biological control agents, that are safer and more effective than traditional methods of pest control should be more widely promoted. Until now, these technologies have been little used by the forestry sector (Villacide and Corley, 2012; Flores-Villegas et al., 2019). The present work is a review of the current knowledge on the phytopathogenic agents associated with the main forestry diseases and the biological control agents that have been used to control them.

Diseases of Pinus spp. Pine Forest diseases are alterations of forest health associated with the interaction between pathogens, susceptible trees, and a favorable environment. Fungal diseases are one of the main causes of the decrease in forest biomass in Mexico (Gutiérrez-Flores et al., 2020). The presence of diseased Pinus spp. trees favors the dissemination of pathogens in the ecosystem through natural and anthropic factors (Figure 1). Phytopathogenic fungi attack different parts of pine trees, causing various diseases (Belén et al., 2011). In Pinus patula, for example, fungal infection causes the needles to fall. The damage starts from the needles and spreads to the branches, stems and sometimes even the roots, causing the tree to die and the forest population to decrease (Figure 2). This disease is mainly associated with pathogens such as Alternaria alternata and Meria laricis, but there are also reports of its association with the genera Annulohypoxylon, Botryosphaeria, Curvularia, Daldinia, Diplodia, Lophodermium, and Myrmaecium in different pine species such as P. arizonica, P. cembroides, P. patula, and P. pseudostrobus from different places such throughput the world as Canada, China, USA, and Mexico, among others (Table 1) (Guo et al., 2008; Cram et al., 2012; Marmolejo-Monciváis, 2018; Gutiérrez-Flores et al., 2020). The availability of nutrients in the soil also contributes to needle drop (Gutiérrez-Flores et al., 2020).

Figure 1 Dissemination of pathogens associated with diseases in pine forest 

Figure 2 Symptoms associated with phytopathogenic fungi. The symptoms observed in Pinus patula trees are foliage ye llowing, needle drop, yellow lesions and central wood necrosis. 

Diplodia sapinea is an opportunistic pathogen with a worldwide distribution that mainly affects P. patula and P. sylvestris. It has been associated with dieback, a disease in which diseased needles initially turn yellow, then red, brown or gray, and branch deformation results in needle death, with cankers on stems, branches and buds (Ospina et al., 2011; Cram et al., 2012; Gutiérrez-Flores et al., 2020; Larsson et al., 2021). Other pathogens such as Fusarium circinatum cause pine pitch canker, in which the needles wither and change from yellow to reddish until dry, and the shoots are defoliated, frequently causing crown dieback and eventually leading to the death of the tree. This pathogen is widely distributed in various countries, including Mexico. Therefore, it affects a wide variety of pine species (Cram et al., 2012; Carrasco et al., 2016; Martínez-Álvarez et al., 2016; Flores-Pacheco, 2017; Iturritxa et al., 2017; García-Díaz et al., 2019; Yu and Luo, 2020). The genus Lophodermium is present in forests of Mexico, Europe and Asia. It has been associated with the species Pinus ayacahuite, P. patula, Pinus montezumae, and P. sylvestris. Infected needles develop brown spots with yellow margins, ending with tissue death (Cibrián et al., 2007; Reignoux et al., 2014; Behnke‐Borowczyk et al., 2018; Gutiérrez-Flores et al., 2020; Sheller et al., 2020). Other fungal genera that have been reported to affect Pinus spp. are Botrytis, Ceratocystis, Cylindrocarpon, Cronartium, Curvularia, Daldinia, Dothistroma, Mycosphaerella, Lecanosticta, Phytophthora, Pythium, and Rhizoctonia (Figure 3). These fungi trigger different pathologies such as gray mold, regressive death, blue spot, blackfoot, blight, etc. (Table 1) (Ospina et al., 2011; Cram et al., 2012; Moreno-Rico et al., 2015; van der Nest et al., 2019; Gutiérrez-Flores et al., 2020; Oskay et al., 2020; Raitelaityté et al., 2020).

Table 1 Fungi reported national and internationally that are associated with the main diseases present in Pinus spp. 

Patógeno fúngico Enfermedad Hospedante Distribución Referencia
Alternaria alternata Caída de acículas Pinus sp. China
P. arizonica Guo et al., 2008
P. cembroides México Marmolejo-Monciváis, 2018
P. patula Gutiérrez-Flores et al., 2020
P. pseudostrobus
Annulohypoxylon stygium Caída de acículas P. patula México Gutiérrez-Flores et al., 2020
Botrytis cinerea Moho Gris P. massoniana Suecia Capieau et al., 2004
Botryosphaeria dothidea Caída de acículas Pinus sp. México Marsberg et al. 2017
Muerte regresiva P. patula Sudáfrica Gutiérrez-Flores et al., 2020
Ceratocystis sp. Mancha azul en trozas P. patula Colombia Guerra et al., 2004
P. radiata Osorio, 2007
P. tropicalis Ospina et al., 2011
Cronartium quercuum Roya de agallas Pinus sp. EUA Cram et al., 2012
Cronartium quercuum Oxidación fusiforme Pinus sp. EUA Cram et al., 2012
f. sp. fusiforme
Curvularia sp.C. lunata Caída de acículas P. patula México Gutiérrez-Flores et al., 2020
C. pseudobrachyspora
C. spicifera
C. trifolii
Cylindrocarpon sp. Pie negro Pinus sp. EUA Cram et al., 2012
Daldinia sp. Caída de acículas Chancrosis P. patula España Stadler et al. 2014
D. eschscholtzii Sanz-Ros et al. 2015
D. fissa P. sylvestris México Gutiérrez-Flores et al., 2020
D. petriniae
Diplodia sapinea Caída de acículas Pinus sp. Colombia Ospina et al., 2011
P. patula EUA Cram et al., 2012
Muerte descendente P. sylvestris México Gutiérrez-Flores et al., 2020
Suecia Larsson et al., 2021
Dothistroma sp. Banda roja Pinus sp. Cibrían, 2007
P. contorta México Cram et al., 2012
P. ponderosa Suiza Queloz et al., 2014
P. nigra Alenezi et al., 2015
P. radiata
Fusarium sp. Fusariosis vascular Pinus sp. Colombia Ospina et al., 2011
F. oxysporum P. patula México Robles-Yerena et al., 2016
F. solani P. pseudostrobus
F. circinatum Chancro resinoso Pinus sp. Chile Cram et al., 2012
del pino P. greggii China Carrasco et al., 2016
P. massoniana EUA Martínez-Álvarez et al., 2016
P. nigra España Flores-Pacheco, 2017
P. pinaster México Iturritxa et al.,2017
P. pinea García-Díaz et al.,2019
P. radiata Yu y Luo, 2020
P. sylvestris
P. tadea
Lecanosticta acicola Banda marrón Pinus sp. Guatemala van der Nest et al., 2019
P. mugo México Oskay et al.,2020
P. sylvestris Polonia Raitelaityté et al.,2020
Turquía
Lophodermium sp. Caída de acículas P. ayacahuite Escocia Reignoux et al. 2014
L. indianum Chancrosis P. montezumae México Behnke‐Borowczyk et al., 2018
L. seditiosum P. patula Polonia Gutiérrez-Flores et al., 2020
P. sylvestris Rusia Sheller et al.,2020
Meria laricis Caída de acículas Pinus sp. Cánada Cram et al., 2012
EUA
Mycosphaerella sp. Banda roja de la acícula Pinus sp. Colombia Ospina et al., 2011
P. patula EUA Cram et al., 2012
Myrmaecium rubricosum Caída de acículas P. patula México Gutiérrez-Flores et al., 2020
Passalora sequoiae Moho de la hoja Pinus sp. EUA Cram et al., 2012
Pestalotiopsis funerea Tizón del follaje Pinus sp. EUA Cram et al., 2012
Phoma eupyrena Phomosis Pinus sp. EUA Cram et al., 2012
Phomopsis juniperovora Phomosis Pinus sp. EUA Cram et al., 2012
P. lokoyae
Phythophthora cinnamomi Muerte de raíces P. radiata Chile Ahumada et al., 2013
Phytophthora sp. Volcamiento o pudrición de la raíz Pinus sp. Colombia Ospina et al., 2011
Pythium sp. P. patula EUA Cram et al., 2012
Rhizoctonia sp.
Ophiostoma sp. Mancha azul de la madera P. leiophylla México Moreno-Rico et al., 2015
O. pulvinisporum P. teocote
O. pluriannulatum

The phytopathogenic fungi associated with Pinus spp. are difficult to identify, due to the relationship between their life cycles, the phenological development of the host, and the presence of environmental factors that makes them behave as saprophytes and mutualists (Gutiérrez-Flores et al., 2020). The great diversity of fungal agents that cause foliar loss and death in Pinus spp. throughout the world has elicited concern and interest among the scientific community and society in general (Gutiérrez-Flores et al., 2020; Larsson et al., 2021). This phytosanitary situation has driven the search for ways to manage and control diseases of fungal origin using synthetic molecules and biological agents (Adusei-Fosu and Rolando, 2018; Kang et al., 2019).

Importance of pesticides. Pesticides are anthropogenic substances or mixtures of substances with broad-spectrum activity and environmental persistence that are intended to prevent, destroy or control crop pests (Narváez-Valderrama et al., 2012; del Puerto-Rodríguez et al., 2014). The dispersion of pesticide chemicals among plants depends on the physicochemical properties of pesticides, their formulation and presentation, climatic conditions, geological characteristics, forms of application and transport processes (Ramírez and Lacasaña, 2001). Pesticides can be classified according to their use as insecticides, fungicides, herbicides, bactericides, etc.; They are also classified based on their chemical composition into organochlorines, organophosphates, carbamates, pyrethroids, bipyridyl compounds, inorganic salts, etc (Ferrer, 2003; Serra et al., 2020). The excessive and irrational use of these chemical products is an important problem not only because their residual persistence in the environment and the resistance that pest organisms can generate against them, but also because they can get into human bodies through drinking water, air, soil, and indirectly, through the biological chain of food. This can cause several health problems, including genetic mutations, hormonal alterations and endocrine modifications (Tobón-Marulanda et al., 2010; Ortíz et al., 2014; Bravo et al., 2020).

Figure 3 Most frequent fungi associated with Pinus patula de Tetela de Ocampo, Puebla, México. A. Alternaria alternata M1AAR1; B. Annulohypoxylon stygium T1R1; C. Botryosphaeria dothidea M7MtPpA-CH3 (2); D. Curvularia lunata M1MtPpA-AA; E. C. pseudobrachyspora M41MtPpA-CHR1; F. C. spicifera M21MtPpA-AAR2; G. C. trifolii M2MtPpA-AA; H. Daldinia eschscholtzii T5R2; I. Daldinia sp. M3MtPpA-CHR2 (2); J. Diplodia sapinea M3MtPpA-CH; K. Lophodermium indianum M1MtPpA-PDAR1; and L. Myrmaecium rubricosum M1MtPpA-PDA ((Modified by Gutiérrez-Flores et al., 2020). 

Fungal control by chemical agents. Fungicides have been widely used to control fungi and are classified according to their characteristics, including their chemical or biological origin. Chemical fungicides have been applied as foliar sprays to control phytopathogenic fungi in forest species. In Mexico, fungicides used in forestry have also been used in agriculture. These include Azoxystrobin, Chlorothalonil, Fosetil-Al, Calcium Phosphite, Copper Phosphite, Potassium Phosphite, Mancozeb, Metalaxyl-Chlorothalonil, and Propiconazole (Table 2). These function as residual or contact protectants that control or prevent the spread of fungi to healthy hosts when applied correctly (Adusei-Fosu and Rolando, 2018). Table 2 lists some fungicides with systemic action, Azoxystrobin (strobilurins), Fosetil-Al (organophosphate), Metalaxil (acylalanines), and Propiconazole (triazoles), as well as fungicides with protective and healing activity, Chlorothalonil (chloronitriles), and Mancozeb (dithiocarbamates), that must be applied before the fungal infection to prevent the development of new lesions (DEAQ, 2022). It is important to know which fungi affect forest trees because there are many tree diseases that are natural (old age) and cyclical ecological phenomena, and most of them are untreatable with fungicides (Adusei-Fosu and Roland, 2018).

Table 2 Main chemical fungicides recommended for forestry use in Mexico. 

Ingrediente activo: concentración (%) Actividadz Grupo químico Intervalo entre aplicaciones (días) Dosis para uso forestal en 100 L
Azoxystrobin: (23) Sistémico, protector y curativo Estrobilurinas 7-14 0.20-0.40 L
Clorotalonil: (52-54) Protector y curativo Cloronitrilos 7-10 1.75-2.6 L
Fosetil-Al: (80) Sistémico Organofosforados 10-14 200-300 g
Fosfito de calcio: (25) Inductor de defensa, y aporta nutrientes Oxisal 7-14 0.25 L
Fosfito de cobre: (40) Inductor de defensa, y aporta nutrientes Oxisal 20-25 0.25 L
Fosfito potásico: (70) Inductor de defensa, y aporta nutrientes Oxisal 7-10 0.250 L
Mancozeb: (30-80) Protector no sistémico Ditiocarbamatos 7-10 250-300 g
Metalaxil: (9), Clorotalonil: (72) Sistémico, protector y curativo Acilalaninas, Cloronitrilos 10-14 400-1000 g
Propiconazol: (26) Sistémico, protector y curativo Triazoles 7-10 0.5 L

zDictionary of Agrochemical Specialties (DEAQ, 2022); Federal Commission for the Protection against Sanitary Risks.

Fungicides are classified as highly dangerous since they can cause harmful effects in humans such as contact dermatitis, chronic skin diseases, visual disturbances, and pulmonary edema, sometimes with lethal consequences. This is often the result of not complying with the criteria established by the United Nations Organization (UN) for the use and commercialization of fungicides (Speck-Planche et al., 2012; FAO and WHO, 2016). Some fungicides authorized for use in Mexico by the Federal Commission for the Protection against Sanitary Risks (COFEPRIS) include Azoxystrobin, Chlorothalonil, Fosetil-Al, Mancozeb, Metalaxyl-Chlorothalonil, and Propiconazole (COFEPRIS, 2019). However, Chlorothalonil is on the list of extremely dangerous substances for human health (NJ Health, 2017) due to its carcinogenic properties and the fact that it is highly toxic to fauna, posing a serious environmental risk (Reglinski and Dick, 2005; Ortíz et al., 2014).

Unfortunately, there is a lack of information about the characterization and effective use of chemical fungicides in pine trees. Not enough is known about the physiological, biochemical and molecular modes of action of these products, the procedures that should be followed to avoid the development of resistance to chemical molecules in disease-causing agents, their effects on the soil microbiota, the application dose, or the time, place and methods with which to apply them (Adusei-Fosu and Rolando, 2018).

Fungal control by biological agents. Biological fungicides, also known as biofungicides (Heydari and Pessarakli, 2010; Liu et al., 2021) or biocontrol agents, are formulations developed from bacteria or fungi that are designed to control and/or eradicate pathogenic fungi. These products have been used as an alternative method to reduce the damage caused by pathogenic fungi while generating little or no environmental contamination and without generating resistance in the targeted fungi (Guédez et al., 2008; Heydari and Pessarakli, 2010).

The biological control of fungi and also involve the participation of an antagonist organism, an agent or a combination of biological agents that can interfere with the physiological processes of pathogenic parasites (Legrand et al., 2017). The efficient use of biological control agents affects various interactions between the biological control agent, the pathogen, the host, and the environment, among others. It can be effective in reducing the incidence of pathogenic fungi among forest populations (Figure 4).

Figure 4 Interactions that play a role in biological control (Adaptado de Mora-Aguilera et al., 2017). 

The interest in biological control has increased in recent decades due to its advantages over traditional fungal control methods (Table 3), mainly due to the indiscriminate use of chemical products, which has led pathogens to develop resistance (Gepp et al., 2012; Yang et al., 2019). The increasing commitment to environmental conservation has promoted the development of sustainable and comprehensive methods to reduce the excessive use of agrochemicals. Biological control agents have shown to be effective in reducing the inoculum load of the pathogen. Antagonist organisms are involved in different mechanisms that may act together against pathogens, such as competition for space and nutrients, parasitism, production of secondary metabolites (antibiotics, lytic enzymes and volatile compounds), and induced systemic resistance in plants (Hernández-Lauzardo et al., 2007; Martínez et al., 2013).

Table 3 Advantages and disadvantages of the use of biological control agents for fungal ma nagement. 

Ventajas Desventajas
Mayor especificidad Ignorancia sobre el método
Baja resistencia de las plagas al control biológico Falta de apoyo económico
Sustitución parcial o total a los plaguicidas sintéticos de sustancias químicas Falta de personal especializado
Relación coste/beneficio mayor Antagonistas susceptibles a plaguicidas
Evita plagas secundarias No provee una supresión inmediata
Escasas intoxicaciones Poca investigación toxicológica
Amigable con el ambiente Sobrevivencia y adaptabilidad

Source: Guédez et al. (2008); Holmes et al. (2016)

Some microorganisms secrete secondary metabolites that aid in biological control. These compounds are not directly involved in the growth, development or reproduction of pathogens, but can interfere indirectly with their growth and/or activities. An example of this metabolic action is the production of antibiotics. Some microorganisms produce and secrete one or more antibiotic compounds (Liu et al., 2021). The production of lytic enzymes that can hydrolyze a wide variety of polymeric compounds, such as chitin, proteins, cellulose, hemicellulose and DNA, is associated with the control of pathogens (Vargas-Hoyos and Gilchrist-Ramelli, 2015).

Another biocontrol mechanism is mycoparasitism, in which the antagonist acts as a mycoparasite, with the pathogen as the host (Steyaert et al., 2003). An example of mycoparasitism (attack of a fungus by another fungus) is the genus Trichoderma, which is widely used as biological control agent (Alfiky and Weisskopf, 2021) against a variety of phytopathogenic fungi.

Pathogenic fungi can also be managed through induced systemic resistance (ISR), a promising non-chemical strategy for effective disease management (Meena et al., 2020). It is an infection-activated plant response that is enhanced by plant growth-promoting rhizobacteria (PGPR) such as Azospirillum, Azotobacter, Gluconacetobacter, Pseudomonas, and Bacillus. These bacteria represent a biological alternative for pathogen control and ecosystem conservation (Choi et al., 2014; Guo et al., 2015; Moreno-Reséndez et al., 2018). However, the systemic resistance response can be limited by stress conditions affecting the plant such as water deficiency, causing alterations in the signals associated with the containment of the pathogen (Arango-Velez et al., 2016). In conifers, the systemic resistance response works through lignification induced by the inoculation of pathogens, as is the case with the fungi Sphaeropsis sapinea and Diplodia scrobiculata in Pinus nigra (Bonello and Blodgett, 2003; Blodgett et al., 2007).

Nutrient competition is another mechanism that can be used to control pathogenic fungi. It is a proven biocontrol method when the growth of antagonist organisms causes the depletion of nutrients and/or the invasion of the space available for pathogens, thereby reducing their growth rate and incidence (Guerrero-Prieto et al., 2011; van Lenteren et al., 2018). An example of this mechanism is the bacterium Serratia marcensces strain PWN146, isolated from Pinus pinaster specimens with wilting symptoms. The genome of this bacterium contains genes associated with the production of siderophores, heavy metal transporters that are involved in the sequestration and transport of iron. The genome also contains genes related to the biosynthesis of antibiotics, such as the igrB gene (gramicidin), tycC (tyrocidine), ppsDE (plipastatin), and srfAD (surfactin), enzymes that degrade the cell wall (Chitinase Class I) and a toxin with insecticide activity (cytolytic delta-endotoxin cyt1Aa type-1Aa) (Vicente et al., 2016).

The biological control of fungi is a method widely used in the agricultural sector. It has also been proposed for the management of forest diseases as an alternative to the use of chemical agents that can help conserve and recover forests that have been lost or degraded by disease. Table 4 shows some examples of biological control agents against fungi affecting pine trees. The most widely studied biofungicides are species belonging to Trichoderma and Bacillus.

Table 4 Use of biological control agents for the control of fungi that cause diseases in Pinus spp. 

Agente de Biocontrol Patógeno Planta Aplicación Referencia
Hongos
a. Trichoderma
T. harzianum Fusarium circinatum P. greggii Invernadero García-Díaz et al., 2019
T. koningiopsis Fusarium oxysporum P. massoniana In vitro Yu y Luo, 2020
Invernadero
T. harzianum Botrytis cinerea P. sylvestris In vitro Capieau et al., 2004
T. polysporum Vivero
T. virens, T. atrobrunneum Armillaria spp. Robles y abetos In vitro Chen et al., 2019
Campo
b. Otro
Chaetomium, Alternaria F. circinatum P. nigra Martínez-Álvarez et al., 2016
P. pinaster In vitro
P. pinea Campo
P. radiata
P. sylvestris
Bacterias
a. Aneurinibacillus
Aneurinibacillus migulanus Dothistroma septosporum P. contorta In vitro Alenezi et al., 2015
b. Bacillus
B. pumilus Sphaeropsis sapinea P. massoniana In vitro Dai et al., 2021
Invernadero
B. simplex Heterobasidion annosum P. radiata In vitro Mesanza et al., 2016
Armillaria mellea Invernadero
F. circinatum P. radiata In vitro Iturritxa et al., 2017
Invernadero
B. subtilis Fusarium sambucinum P. elliottii In vitro Maciel et al., 2014
Invernadero
F. circinatum P. taeda In vitro Soria et al., 2012

Trichoderma. Biofungicides based on the genus Trichoderma are considered highly effective. They work by producing enzymes (chitinases, b-1,3 glucanases and proteases), antibiotics (6-pentyl-a-pyrone), volatile compounds, siderophores, and acid indole-3-acetic acid. They also promote plant growth (Michel-Aceves et al., 2004; Infante et al., 2009; Rios-Velasco et al., 2016; Ruiz-Cisneros et al., 2018; Illa et al., 2020; Yu and Luo, 2020). Another mechanism associated with Trichoderma involves chemotropism induced by the existence of a chemical gradient of amino acids and/or sugars, recognition (physical interaction by specific binding to the host surface), penetration and finally, mycoparasitism of the host cell wall by the action of lytic enzymes. (Steyaert et al., 2003; Alfiky and Weisskopf, 2021). Some studies show that strains of Trichoderma sp. isolated from forest plants have the ability to biocontrol pathogenic fungi of the genus Armillaria, which causes root rot (Chen et al., 2019). Commercial products such as Binab® TF.WP, formulated with strains of Trichoderma harzianum and T. polysporum, have been used as fungicides and have been as effective as the chemical fungicide (tolylfluanine 50% p/p) recommended against Botrytis cinerea. They have also reduced needle damage in P. sylvestris by up to 94% in growth chambers and by 57% under nursery conditions (Capieau et al., 2004). T. harzianum (PHC®) reduces the incidence of the disease caused by F. circinatum in P. greggii seedlings by up to 22% (García-Díaz et al., 2019). T. koningiopsis inhibits the growth of F. oxysporum (in vitro) by up to 78.6% and decreases the incidence of the disease by 50% in P. massoniana while promoting seedling growth (Yu and Luo, 2020).

Bacillus. It is the most exploited bacterial genus for the production of biofungicides due to its versatility in terms of biological control mechanisms. Members of this genus can produce volatile compounds, antibiotics (bacillomycin, iturins, phenycins, fengycins, subtilins, surfactins), lytic enzymes (chitinases and b-1,3-glucanases), siderophores (Bacillibactin), and toxins (d-endotoxins). They also have the ability to promote plant growth (Villarreal-Delgado et al., 2017; Jiménez-Delgadillo et al., 2018; Kang et al., 2019; Ocegueda-Reyes et al., 2020; Dai et al., 2021). Some studies have shown that these bacteria can induce a systemic resistance response in plants by eliciting molecules (lipopeptides, phytohormones, and volatile compounds). They also activate the synthesis of salicylic acid, ethylene, jasmonic acid and abscisic acid, which regulate the defense system of different crop plants (Villarreal-Delgado et al., 2017; Vinod and Sabah, 2018). B. subtilis has demonstrated its ability to control fungi, inhibiting up to 18.7% of the in vitro growth of F. sambucinum, and providing greater vigor and growth to P. elliottii seedlings (Maciel et al., 2014). The secondary metabolites produced by B. subtilis represent an efficient fungicide alternative. They inhibit 50% of the growth of F. circinatum isolated from P. taeda (Soria et al., 2012). Biocontrol methods have managed to reduce the high incidence and severity of F. circinatum infection in P. radiata and P. muricata (Gordon et al., 2006). In addition, B. simplex is capable of biocontrolling Heterobasidion annosum and Armillaria mellea in vitro. It also reduces by 55% the infection incidence of H. annosum and by 46.9% the infection incidence of A. mellea in P. radiata seedlings (Mesanza et al., 2016). B. simplex also has antagonistic activity against F. circinatum (17%) in vitro and reduces P. radiata lesions by up to 22% in two-year-old trees grown in greenhouses (Iturritxa et al., 2017). B. pumilus isolated from P. massoniana can biocontrol 85% of the damage caused by Sphaeropsis sapinea in vitro and 90% under greenhouse conditions due to the production of secondary metabolites that damage the mycelium and delay spore germination (Dai et al., 2021).

Conclusions

Pine forests are ecosystems of great importance due to the ecological, economic, and social benefits they provide. The global forest biomass has been reduced by several factors such as excessive logging and the conversion of forests into agricultural or residential areas. In addition, forests face biotic problems such as fungal diseases that spread through natural and anthropogenic factors. Therefore, it is important to have a comprehensive understanding of the various fungi that have been reported to infect pine species (Alternaria, Botrytis, Ceratocystis, Cylindrocarpon, Cronartium, Curvularia, Daldinia, Diplodia, Dothistroma, Fusarium, Meria, Mycosphaerella, Lecanosticta, Lophodermium, Phytophthora, Pythium, and Rhizoctonia, among others). It is also important to know the different factors involved in plant fungal infections, such as the host, environmental conditions, management, and anthropogenic influences.

In Mexico, the forestry sector has made excessive use of chemical products to control fungi; however, these products are registered for agricultural and non-forestry use. Given the recent interest in reducing the use of agrochemicals, the use of biological control agents is promoted as a friendly alternative for the recovery of forests with no negative ecological impact. These products can be implemented in urban areas since they pose be no danger to people or animals that interact with forests.

The information documented in the present work shows that Trichoderma sp. and Bacillus sp. are the most studied biofungicides associated with Pinus spp. The use of these agents helps maintain and conserve forest resources. Further research is needed to promote the use, management and conservation of forests with biological methods that allow to control phytopathogenic species.

Acknowledgement

To the National Council of Science and Technology (CONACYT) for the Doctoral Scholarship in Environmental Sciences awarded to Luis Martín Gutiérrez Flores (Scholarship No. 742331 ). To the Vicerectoría de Investigación y Estudios de Posgrados (VIEP) of the Benemérita Universidad Autónoma de Puebla (BUAP), for the financial support of the research project: “Diagnosis of the fungal disease of Pinus patula from Tetela de Ocampo, Puebla and proposal for biocontrol” (100155588-VIEP 2017-2020).

Literatura citada

Adusei-Fosu K and Rolando CA. 2018. Chemical control -review of control methods and fungicides. Ministry for Primary Industries Biosecurity. New Zealand Technical Paper No. 2019/24. Wellington, New Zealand. 31p. http://www.mpi.govt.nz/news-and-resources/publications/Links ]

Ahumada R, Rotella A, Slippers B and Wingfield MJ. 2013. Pathogenicity and sporulation of Phytophthora pinifolia on Pinus radiata in Chile. Australasian Plant Pathology 42: 413-420. https://doi.org/10.1007/s13313-013-0212-4 [ Links ]

Alenezi FN, Fraser S, Bełka M, Doğmuş TH, Heckova Z, Oskay F, Belbahri L and Woodward S. 2015. Biological control of Dothistroma needle blight on pine with Aneurinibacillus migulanus. Forest Pathology 46(5): 555-558. https://doi.org/10.1111/efp.12237 [ Links ]

Alfiky A and Weisskopf L. 2021. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. Journal of Fungi 7(1): 61. https://doi.org/10.3390/jof7010061 [ Links ]

Arango-Velez A, El Kayal W, Copeland CCJ, Zaharia LI, Lusebrink I and Cooke JEK. 2016. Differences in defense responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit. Plant, Cell and Environment 39(4): 726-744. https://doi.org/10.1111/pce.12615 [ Links ]

Balvanera P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas 21(1-2): 136-147. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/33Links ]

Behnke‐Borowczyk J, Kwaśna H and Kulawinek B. 2018. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. Forest Pathology 49(2): e12487. https://doi.org/10.1111/efp.12487 [ Links ]

Belén M, Errasti A y Villacide J. 2011. Patagonia y su asociación con plagas entomológicas Manejo Integrado de Plagas Forestales. Ediciones Instituto Nacional de Tecnología Agropecuaria. Argentina. 14p. [ Links ]

Blodgett TJ, Eyles A and Bonello P. 2007. Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiology 27(4): 511-517. https://doi.org/10.1093/treephys/27.4.511 [ Links ]

Bonello P and Blodgett TJ. 2003. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiological and Molecular Plant Pathology 63(5): 249-261. https://doi.org/10.1016/j.pmpp.2004.02.002 [ Links ]

Bravo N, Grimalt JO, Mazej D, Tratnik JS, Sarigiannis DA and Horvat M. 2020. Mother/child organophosphate and pyrethroid distributions. Environment International 134(2020): 105264. https://doi.org/10.1016/j.envint.2019.105264 [ Links ]

Brown S and Verschuuren B. 2018. Cultural and spiritual significance of nature in protected and conserved areas: The ‘deeply seated bond’. Pp:1-13. In: Brown S and Verschuuren B (eds.). Cultural and Spiritual Significance of Nature in Protected Areas: Governance, Management and Policy. Routledge. London. 334p. https://doi.org/10.4324/9781315108186-1 [ Links ]

Capieau K, Stenlid J and Stenström E. 2004. Potential for biological control of Botrytis cinerea in Pinus sylvestris seedlings. Scandinavian Journal of Forest Research 19(4): 312-319. https://doi.org/10.1080/02827580310019293 [ Links ]

Carrasco A, Sanfuentes E, Durán A y Valenzuela S. 2016. Cancro resinoso del pino: ¿una amenaza potencial para las plantaciones de Pinus radiata en Chile?. Gayana Botánica 73(2): 369-380. http://dx.doi.org/10.4067/S0717-66432016000200369 [ Links ]

Chen L, Bóka B, Kedves O, Nagy VD, Szucs A, Champramary S, Roszik R. Patocskai Z, Münsterkötter M, Huynh T, Indic B, Vágvölgyi C, Sipos G and Kredics L. 2019. Towards the biological control of devastating forest pathogens from the genus Armillaria. Forests 10(11): 1013. https://doi.org/10.3390/f10111013 [ Links ]

Choi HK, Song GC, Yi HS and Ryu CM. 2014. Field Evaluation of the Bacterial Volatile Derivative 3-Pentanol in Priming for Induced Resistance in Pepper. Journal of Chemical Ecology 40(2014): 882-892. https://doi.org/10.1007/s10886-014-0488-z [ Links ]

Cibrián TD, Alvarado-Rosale D y García-Díaz SE. 2007. Enfermedades forestales en México/Forest Diseases in Mexico. UACH; Conafor-Semarnat, México; Forest Service USDA, EUA; NRCAN Forest Service, Canadá y Comisión Forestal de América del Norte, COFAN, FAO. Chapingo, México. 587p. [ Links ]

COFEPRIS. Comisión Federal para Protección contra Riesgos Sanitarios. 2019. Consulta de Registros Sanitarios de Plaguicidas, Nutrientes Vegetales y LMR. http://siipris03.cofepris.gob.mx/Resoluciones/Consultas/ConWebRegPlaguicida.asp (consulta, septiembre 2020). [ Links ]

Cram MM, Frank MS and Mallams KM. 2012. Forest Nursery Pests. Agriculture Handbook 680, USDA Forest Service. Washington, DC, USA. 202p. https://www.fs.usda.gov/treesearch/pubs/54434Links ]

Dai Y, Wu XQ, Wang YH and Zhu ML. 2021. Biocontrol potential of Bacillus pumilus HR10 against Sphaeropsis shoot blight disease of pine. Biological Control 152(2021): 104458. https://doi.org/10.1016/j.biocontrol.2020.104458 [ Links ]

DEAQ. 2022. Diccionario de Especialidades Agroquímicas. 32th Edición. PLM. Cd. de México, México. 1178p. https://www.agroquimicos-organicosplm.com/Links ]

del Puerto RAM, Suárez TS y Palacio EDE. 2014. Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología 52(3): 372-387. http://scielo.sld.cu/pdf/hie/v52n3/hig10314.pdfLinks ]

FAO and UNEP. 2020. The State of the World’s Forests 2020. FAO and UNEP. Roma. 224p. https://doi.org/10.4060/ca8642en [ Links ]

FAO and WHO. 2016. International Code of Conduct on Pesticide Management. Guidelines on highly hazardous pesticides. FAO and WHO. Roma. 37p. http://www.fao.org/publicationsLinks ]

FAO. 2011. FAO state of the world’s forests. In Forestry Chronicle. 9th Edición. Vol. 80, Issue 2. FAO. Roma. 164p. http://www.fao.org/3/i2000e/i2000e.pdfLinks ]

FAO. 2018. The state of the world´s Forest. FAO. Roma. 118p. https://doi.org/10.1016/b0-12-145160-7/00156-3 [ Links ]

Ferrer A. 2003. Intoxicación por plaguicidas. Anales del Sistema Sanitario de Navarra 26:155-171. https://doi.org/10.4321/s1137-66272003000200009 [ Links ]

Flores-Pacheco JA. 2017. Chancro resinoso del pino (Fusarium circinatum) historia, evolución, dispersión y estrategia de manejo. Nexo Revista Científica 30(1): 19-42. http://dx.doi.org/10.5377/nexo.v30i01.5170 [ Links ]

Flores-Villegas MY, González-Laredo RF, Pompa-García M, Ordaz-Díaz LA, Prieto-Ruíz JA y Domínguez-Calleros PA. 2019. Uso de plaguicidas y nuevas alternativas de control en el sector forestal. Foresta Veracruzana 21(1): 29-38. https://www.redalyc.org/jatsRepo/497/49759430007/html/index.htmlLinks ]

García-Díaz SE, Aldrete A, Alvarado-Rosales D, Cibrián-Tovar D and Méndez-Montiel JT. 2019. Trichoderma harzianum Rifai as a biocontrol of Fusarium circinatum Nirenberg & O´Donnell in seedlings of Pinus greggii Engelm. ex Parl. in three substrates. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(3): 353-367. https://doi.org/10.5154/r.rchscfa.2018.12.088 [ Links ]

Gepp V, Vero S, Cassanello ME, Romero G, Silvera E, González P, Rebellato J, Ferreira Y y Bentancur O. 2012. Resistencia a fungicidas en Botrytis cinerea en el Uruguay. Agrociencia Uruguay 16(1): 97-107. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482012000100012Links ]

Gordon TR, Kirkpatrick SC, Aegerter BJ, Wood DL and Storer AJ. 2006. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant Pathology 55(2): 231-237. https://doi.org/10.1111/j.1365-3059.2006.01351.x [ Links ]

Guédez C, Castillo C, Cañizales L and Olivar R. 2008. “Biological control” a tool for sustaining and sustainable development. Academia 7(13): 50-74. http://erevistas.saber.ula.ve/index.php/academia/article/view/6030Links ]

Guerra C, Cruz H, Vila I, Duarte A y López MO. 2004. Principales hongos que afectan a Pinus tropicalis Morelet en Cuba. Fitosanidad 8(2): 9-12. https://www.redalyc.org/pdf/2091/209117836001.pdfLinks ]

Guerrero-Prieto VM, Blanco Pérez AC, Guigón López C, Tamayo Urbina CJ, Molina Corral FJ, Berlanga Reyes DI, Carvajal Millan E y Ávila Quezada GD. 2011. Competencia por Nutrientes; Modo de Acción de Candida oleophila Contra Penicillium expansum y Botrytis cinerea. Revista Mexicana de Fitopatología 29(2): 90-97. http://www.scielo.org.mx/pdf/rmfi/v29n2/v29n2a1.pdfLinks ]

Guo LD, Huang GR and Wang Y. 2008. Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. Journal of Integrative Plant Biology 50(8): 997-1003. https://doi.org/10.1111/j.1744-7909.2008.00394.x [ Links ]

Guo S, Li X, He P, Ho H, Wu Y and He Y. 2015. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of Industrial Microbiology and Biotechnology 42(6): 925-937. https://doi.org/10.1007/s10295-015-1612-y [ Links ]

Gutiérrez-Flores LM, Mauricio-Gutiérrez A, Carcaño-Montiel MG, Portillo-Manzano E, Gómez-Velázquez L, Sánchez-Alonso P and López-Reyes L. 2020. Fungi associated with sick trees of Pinus patula in Tetela de Ocampo, Puebla, Mexico. Archives of Phytopathology and Plant Protection 53(13-14): 591-611. https://doi.org/10.1080/03235408.2020.1778241 [ Links ]

Hernández-Lauzardo AN, Bautista-Baños S, Velázquez-Del Valle MG y Hernández-Rodríguez A. 2007. Uso de Microorganismos Antagonistas en el Control de Enfermedades Postcosecha en Frutos. Revista Mexicana de Fitopatología 25(1): 66-74. http://www.scielo.org.mx/pdf/rmfi/v25n1/v25n1a9.pdfLinks ]

Heydari A and Pessarakli M. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences 10(4): 273-290. https://doi.org/10.3923/jbs.2010.273.290 [ Links ]

Holmes L, Mandjiny S and Upadhyay D. 2016. Biological Control of Agriculture Insect Pests. European Scientific Journal 12 (SPECIAL edition): 216-225. https://core.ac.uk/download/pdf/236413921.pdfLinks ]

Illa C, Pérez AA, Torassa M y Pérez MA. 2020. Efecto de biocontrol y promoción del crecimiento en maní por Trichoderma harzianum y Bacillus subtilis en condiciones controladas y campo. Revista Mexicana de Fitopatología 38(1): 119-131. http://dx.doi.org/10.18781/R.MEX.FIT.1910-6 [ Links ]

Infante D, Martínez B, González N y Reyes Y. 2009. Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista Protección Vegetal 24(1): 14-21. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522009000100002Links ]

Iturritxa E, Trask T, Mesanza N, Raposo R, Elvira-Recuenco M and Patten CL. 2017. Biocontrol of Fusarium circinatum infection of young Pinus radiata Trees. Forests 8(2): 32. https://doi.org/10.3390/f8020032 [ Links ]

Jiménez-Delgadillo R, Valdés-Rodríguez SE, Olalde-Portugal V, Abraham-Juárez R y García-Hernández JL. 2018. Efecto del pH y temperatura sobre el crecimiento y actividad antagónica de Bacillus subtilis sobre Rhizoctonia solani. Revista Mexicana de Fitopatología 36(2): 256-275. https://doi.org/10.18781/R.MEX.FIT.1711-3 [ Links ]

Kang X, Guo Y, Leng S, Xiao L, Wang L, Xue Y and Liu C. 2019. Comparative transcriptome profiling of Gaeumannomyces graminis var. tritici in wheat roots in the absence and presence of biocontrol Bacillus velezensis CC09. Frontiers in Microbiology 10: 1474. https://doi.org/10.3389/fmicb.2019.01474 [ Links ]

Ken S, Sasaki N, Entani T, Ma HO, Thuch P and Tsusaka TW. 2020. Assessment of the local perceptions on the drivers of deforestation and forest degradation, agents of drivers, and appropriate activities in Cambodia. Sustainability 12(23): 9987. https://doi.org/10.3390/su12239987 [ Links ]

Larsson R, Menkis A and Olson A. 2021. Diplodia sapinea in Swedish forest nurseries. Plant Protection Science 57(1): 66-69. https://doi.org/10.17221/68/2020-PPS [ Links ]

Legrand F, Picot A, Cobo-Díaz JF, Chen W and Le Floch G. 2017. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control 113(2017): 26-38. https://doi.org/10.1016/j.biocontrol.2017.06.011 [ Links ]

Liu X, Cao A, Yan D, Ouyang C, Wang Q and Li Y. 2021. Overview of mechanisms and uses of biopesticides. International Journal of Pest Management 67(1): 65-72. https://doi.org/10.1080/09670874.2019.1664789 [ Links ]

Maciel CG, Walker C, Muniz MF and Araújo MM. 2014. Antagonism of Trichoderma spp. and Bacillus subtilis (UFV3918) to Fusarium sambucinum in Pinus elliottii Engelm. Revista Árvore 38(3): 505-512. https://dx.doi.org/10.1590/S0100-67622014000300013 [ Links ]

Marmolejo-Monciváis JG. 2018. Distribución vertical de hongos en hojas de tres especies de pinos en Nuevo León, México. Revista Mexicana de Ciencias Forestales 9(50): 379-399. https://doi.org/10.29298/rmcf.v9i50.253 [ Links ]

Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Wingfield MJ, Crous PW, Spatafora JW, Hesse CN, Robbertse B and Slippers B. 2017. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Molecular Plant Pathology 18(4): 477-488. https://doi.org/10.1111/mpp.12495 [ Links ]

Martínez B, Infante D y Reyes Y. 2013. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal 28(1): 1-11. http://scielo.sld.cu/pdf/rpv/v28n1/rpv01113.pdfLinks ]

Martínez-Álvarez P, Fernández-González RA, Sanz-Ros AV, Pando V and Diez JJ. 2016. Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control 94(2016): 1-10. https://doi.org/10.1016/j.biocontrol.2015.11.011 [ Links ]

Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A and Upadhyay RS. 2020. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology 60(10): 828-861. https://doi.org/10.1002/jobm.202000370 [ Links ]

Mesanza N, Iturritxa E, Patten CL. 2016. Native rhizobacteria as biocontrol agents of Heterobasidion annosum s.s. and Armillaria mellea infection of Pinus radiata. Biological Control 101: 8-16. https://doi.org/10.1016/j.biocontrol.2016.06.003 [ Links ]

Michel-Aceves AC, Otero-Sánchez MA, Rebolledo-Domínguez O y Lezama-Gutiérrez R. 2004. Producción y actividad antibiótica del 6 pentil-a-pirona de Trichoderma spp., sobre especies de Fusarium. Revista Mexicana de Fitopatología 22(1):14-21. https://www.redalyc.org/pdf/612/61222103.pdfLinks ]

Mora-Aguilera G, Cortez-Madrigal H and Acevedo-Sánchez G. 2017. Epidemiology of entomopathogens: Basis for rational use of microbial control of insects. Southwestern Entomologist 42(1): 153-169. https://doi.org/10.3958/059.042.0116 [ Links ]

Moreno-Reséndez A, Carda Mendoza V, Reyes Carrillo JL, Vásquez Arroyo J y Cano Ríos P. 2018. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20(1): 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707 [ Links ]

Moreno-Rico O, Sánchez-Martínez G, Marmolejo-Monsiváis JG, Pérez-Hernández K y Moreno-Manzano CE. 2015. Diversidad de hongos Ophiostomatoides en pinos de la sierra Fría de Aguascalientes, México, asociados con Dendroctonus mexicanus. Revista Mexicana de Biodiversidad 86(2015): 1-8. http://dx.doi.org/10.7550/rmb.46751 [ Links ]

Narváez-Valderrama JF, Palacio Baena JA y Molina-Pérez FJ. 2012. Persistencia de plaguicidas en el ambiente y su ecotoxicidad: Una revisión de los procesos de degradación natural. Gestión y Ambiente 15(3): 27-38. https://www.redalyc.org/articulo.oa?id=169424893002Links ]

NJ Health, State of New Jersey Department of Health. 2017. Hazardous Substance. https://www.nj.gov/health/workplacehealthandsafety/right-to-know/hazardous-substances/ (consulta, junio 2022). [ Links ]

Ocegueda-Reyes MD, Casas-Solís J, Virgen-Calleros G, González-Eguiarte DR, López-Alcocer E y Olalde-Portugal V. 2020. Aislamiento, identificación y caracterización de rizobacterias antagónicas a Sclerotium cepivorum. Revista Mexicana de Fitopatología 38(1): 146-159. https://doi.org/10.18781/R.MEX.FIT.1911-2 [ Links ]

Ortíz I, Avila-Chávez MA y Torres LG. 2014. Plaguicidas en México: usos, riesgos y marco regulatorio. Revista Latinoamericana de Biotecnología Ambiental y Algal 5(1): 26-46. https://doi.org/10.7603/s40682-014-0003-9 [ Links ]

Oskay F, Laas M, Mullett M, Lehtijärvi A, Doğmuş-Lehtijärvi HT, Woodward S and Drenkhan R. 2020. First report of Lecanosticta acicula on pine and non-pine hosts in Turkey. Forest Pathology 50(6): e12654. https://doi.org/10.1111/efp.12654 [ Links ]

Osorio MO. 2007. Ceratocystis pilifera, hongo causante de mancha azul en madera de Pinus radiata. Bosque 6(2): 116-119. https://doi.org/10.4206/bosque.1985.v6n2-07 [ Links ]

Ospina PCM, Hernánndez RRJ, Rincón EA, Sánchez OFA, Urrego MJB, Rodas PCA, Ramírez CCA y Riaño HNM. 2011. El Pinus patula. Pinus patula Schiede and Deppe in Schlecht. & Cham. Guías silviculturales para el manejo de especies forestales con miras a la producción de madera en la zona andina colombiana. Editorial Blanecolor S. A. S. Manizales, Colombia. 104p. https://www.cenicafe.org/es/publications/pinus.pdf. [ Links ]

Queloz V, Wey T and Holdenrieder O. 2014. First record of Dothistroma pini on Pinus nigra in Switzerland. Plant Disease 98(12): 1744. https://doi.org/10.1094/PDIS-06-14-0630-PDN [ Links ]

Raitelaityté K, Markovskaja S, Paulauskas A, Hsiang T and Oszako T. 2020. First molecular detection of Lecanosticta acicula from Poland on Pinus mugo. Forest Pathology 50(2): e12589. https://doi.org/10.1111/efp.12589 [ Links ]

Ramírez JA y Lacasaña M. 2001. Plaguicidas: clasificación, uso, toxicología y medición de la exposición. Archivos de Prevención de Riesgos Laborales 4(2): 67-75. http://sistemamid.com/panel/uploads/biblioteca/2014-05-01_11-59-0899004.pdfLinks ]

Reglinski T and Dick M. 2005. Biocontrol of forest nursery pathogens. New Zealand Journal of Forestry 50(3): 19-26. http://www.nzjf.org.nz/free_issues/NZJF50_3_2005/CD6F47DA-12F9-4F5A-9914-BEABE49C0054.pdfLinks ]

Reignoux SNA, Green S and Ennos RA. 2014. Molecular identification and relative abundance of cryptic Lophodermium species in natural populations of Scots pine, Pinus sylvestris L. Fungal Biology 118(9-10): 835-845. https://doi.org/10.1016/j.funbio.2014.07.002 [ Links ]

Rios-Velasco C, Caro-Cisneros JN, Berlanga-Reyes DI, Ruíz-Cisneros MF, Ornelas-Paz JJ, Salas-Marina MA, Villalobos-Pérez E y Guerrero-Prieto VM. 2016. Identificación y actividad antagónica in vitro de Bacillus spp. y Trichoderma spp. contra hongos fitopatógenos comunes. Revista Mexicana de Fitopatología 34(1): 84-99. http://dx.doi.org/10.18781/R.MEX.FIT.1507-1 [ Links ]

Robles-Yerena L, Leyva-Mir SG, Cruz-Gómez A, Camacho-Tapia M, Nieto-Ángel D y Tovar-Pedraza JM. 2016. Fusarium oxysporum Schltdl. y Fusarium solani (Mart.) Sacc. causantes de la marchitez de plántulas de Pinus spp. en vivero. Revista Mexicana de Ciencias Forestales 7(36): 25-36. http://www.scielo.org.mx/scielo.php?pid=S2007-11322016000400025&script=sci_abstract&tlng=esLinks ]

Ruiz-Cisneros MF, Ornelas-Paz JJ, Olivas-Orozco GI, Acosta-Muñiz CH, Sepúlveda-Ahumada DR, Pérez-Corral DA, Rios-Velasco C, Salas-Marina MA y Fernández-Pavía SP. 2018. Efecto de Trichoderma spp. y hongos fitopatógenos sobre el crecimiento vegetal y calidad del fruto de jitomate. Revista Mexicana de Fitopatología 36(3): 444-456. https://doi.org/10.18781/R.MEX.FIT.1804-5 [ Links ]

Sanz-Ros AV, Müller MM, San Martín R and Diez JJ. 2015. Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in Northern Spain. Fungal Biology 119(10): 870-883. https://doi.org/10.1016/j.funbio.2015.06.008 [ Links ]

Serra AA, Bittebière AK, Mony C, Slimani K, Pallois F, Renault D, Couée I, Gouesbet G and Sulmon C. 2020. Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. Science of the Total Environment 744(2020): 140772. https://doi.org/10.1016/j.scitotenv.2020.140772 [ Links ]

Sheller MA, Shilkina EA, Ibe AA, Razdorozhnaya TY and Sukhikh T. 2020. Phytopathogenic fungi in forest nurseries of Middle Siberia. iForest 13(6): 507-512. https://doi.org/10.3832/ifor3507-013 [ Links ]

Soria S, Alonso R and Bettucci L. 2012. Endophytic Bacteria from Pinus taeda L. as Biocontrol Agents of Fusarium circinatum Nirenberg & O’Donnell. Chilean Journal of Agricultural Research 72(2): 281-284. https://doi.org/10.4067/s0718-58392012000200018 [ Links ]

Speck-Planche A, Kleandrova VV, Luan F and Cordeiro MNDS. 2012. Predicting multiple ecotoxicological profiles in agrochemical fungicides: A multi-species chemoinformatic approach. Ecotoxicology and Environmental Safety 80: 308-313. https://doi.org/10.1016/j.ecoenv.2012.03.018 [ Links ]

Springgay E. 2019. Forest as Nature-based solutions for water. Unasylva 70(1): 3-13. http://www.fao.org/3/ca6842en/CA6842EN.pdfLinks ]

Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy HV and Peršoh D. 2014. A polyphasic taxonomy of Daldinia (Xylariaceae). Studies in Mycology 77(1): 1-143. https://doi.org/10.3114/sim0016 [ Links ]

Steyaert JM, Ridgway HJ, Elad Y and Stewart A. 2003. Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. New Zealand Journal of Crop and Horticultural Science 31(4): 281-291. https://doi.org/10.1080/01140671.2003.9514263 [ Links ]

Tobón-Marulanda FÁ, López-Giraldo LA y Paniagua-Suárez RE. 2010. Contaminación del agua por plaguicidas en un área de Antioquia. Revista de Salud Publica 12(2): 300-307. https://doi.org/10.1590/s0124-00642010000200013 [ Links ]

van der Nest A, Wingfiel MJ, Ortiz PC and Barnes I. 2019. Biodiversity of Lecanosticta pine-needle blight pathogens suggest a Mesoamerican Centre of origin. IMA Fungus 10: 2. https://doi.org/10.1186/s43008-019-0004-8 [ Links ]

van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ and Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63: 39-59. https://doi.org/10.1007/s10526-017-9801-4 [ Links ]

Vargas-Hoyos HA y Gilchrist-Ramelli E. 2015. Producción de enzimas hidrolíticas y actividad antagónica de Trichoderma asperellum sobre dos cepas de Fusarium aisladas de cultivos de tomate (Solanum lycopersicum). Revista Mexicana de Micología 42: 9-16. http://www.scielo.org.mx/pdf/rmm/v42/v42a3.pdfLinks ]

Vicente CSL, Nascimento FX, Barbosa P, Ke HM, Tsai IJ, Hirao T, Cock PJA, Kikuchi T, Hasegawa K and Mota M. 2016. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster. Microbial Ecology 72(3): 669-681. https://doi.org/10.1007/s00248-016-0820-y [ Links ]

Villacide J y Corley J. 2012. Introducción a la teoría del control biológico de plagas. INTA, Cambio Rural. Cuadernillo No. 15 Serie Técnica: Manejo integrado de plagas forestales. Vol. 15. Río Negro, Argentina. https://inta.gob.ar/sites/default/files/script-tmp-control_biolgico_de_plagas.pdfLinks ]

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI y De los Santos-Villalobos S. 2017. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología 36(1): 95-130. http://dx.doi.org/10.18781/R.MEX.FIT.1706-5 [ Links ]

Vinod K and Sabah A. 2018. Plant Defense against Pathogens: The Role of Salicylic Acid. Research Journal of Biotechnology 13(12): 97-103. https://www.researchgate.net/publication/329244822Links ]

Yang LN, He MH, Ouyang HB, Zhu W, Pan ZC, Sui QJ, Shang LP and Zhan J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology 19(1): 205. https://doi.org/10.1186/s12866-019-1574-8 [ Links ]

Yu C and Luo X. 2020. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biological Control 150: 104352. https://doi.org/10.1016/j.biocontrol.2020.104352 [ Links ]

Received: May 26, 2022; Accepted: August 23, 2022

* Corresponding author: amg2510@hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License