SciELO - Scientific Electronic Library Online

 
vol.39 issue1Gains in recurrent selection cycles for grain yield and resistance to head smut in maizeFusarium spp. and inoculum load estimation associated to commercial Agave tequilana offsets at different regional epidemic inductivity levels author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de fitopatología

On-line version ISSN 2007-8080Print version ISSN 0185-3309

Rev. mex. fitopatol vol.39 n.1 Texcoco Jan. 2021  Epub May 07, 2021

https://doi.org/10.18781/r.mex.fit.2007-5 

Artículos De Revisión

Morphological characterization of Phytophthora capsici isolates from Jalisco and Michoacán, Mexico

Alfredo Reyes-Tena1 

Gerardo Rodríguez-Alvarado1 

Sylvia P. Fernández-Pavía*  1 

Martha E. Pedraza-Santos3 

John Larsen4 

Gerardo Vázquez-Marrufo2 

1Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5, carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán. C.P. 58880, México

2 Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5, carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán. C.P. 58880, México

3 Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Paseo General Lázaro Cárdenas y Berlín s/n, Viveros, Uruapan, Michoacán. C. P. 60170, México

4 Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Antigua Carretera a Pátzcuaro 8701, Colonia Ex Hacienda de San José de la Huerta, Morelia, Michoacán. C. P. 58190, México.


Abstract

Phytophthora capsici is the main phytopathogen of the chili pepper crop (Capsicum annuum) and diverse commercial plants in Mexico. The limited knowledge of farmers on the presence of this pathogen in cropping areas makes it difficult to prevent and manage the disease. In order to identify and morphologically characterize isolates obtained from cucurbits and solanaceous crops with “wilt” symptoms, in Jalisco and Michoacán, Mexico, samples were collected during 2016 and 2017. The 41 P. capsici isolates obtained from diseased plants were analyzed by comparative morphology based on sexual and asexual characteristics. Were characterized 33 isolates from the C. annuum crop, six from C. pepo and two S. lycopersicum. Most isolates showed typical characteristics of P. capsici, whereas only one isolate showed terminal, globose chlamydospores (isolated from Queréndaro, Mich.). Forty heterothallic isolates were registered and only one homothallic isolate was reported. The pathogenicity of seven isolates was tested, therefore according to the results obtained, P. capsici is the main causal agent of wilt for these isolates and for seven more analyzed in a previous study, the remaining 27 are associated with the disease. Calling for the development of a strategy for integrated management of this pathogen in the Jalisco and Michoacán production areas.

Keywords: Capsicum; Cucurbita; isolation; chili wilt; diagnosis

Resumen

Phytophthora capsici es el principal fitopatógeno del cultivo de chile (Capsicum annuum) y de diversas plantas de interés comercial en México. El desconocimiento por parte de los productores sobre la presencia de este patógeno en zonas de cultivo dificulta la prevención y manejo de la enfermedad. El objetivo de este trabajo fue identificar y caracterizar morfológicamente aislados obtenidos de cultivos de cucurbitáceas y solanáceas con síntomas de “marchitez” en Jalisco y Michoacán, México. Los muestreos se realizaron durante 2016 y 2017. Los 41 aislados de P. capsici obtenidos de plantas enfermas se analizaron por morfología comparativa con base a caracteres sexuales y asexuales. Se caracterizaron 33 aislamientos del cultivo de C. annuum, seis de C. pepo y dos de S. lycopersicum. La mayoría de los aislados presentaron características morfológicas típicas de P. capsici. Solo un aislado presentó clamidosporas, globosas y terminales (aislado de Queréndaro, Mich). Se registraron 40 aislados heterotálicos y un aislado homotálico. Se determinó la patogenicidad de siete aislados, asociando a P. capsici como el agente causal de la marchitez para estos aislados y para siete analizados en un estudio previo. Los 27 aislamientos restantes solo se asociaron a la enfermedad. Se sugiere realizar un manejo integrado de este patógeno en las zonas de producción de Jalisco y Michoacán.

Palabras clave: Capsicum; Cucurbita; aislamiento; marchitez del chile; diagnóstico

Solanaceae and cucurbitaceae production in Mexico is important, where tomato (Solanum lycopersicum), chili pepper (Capsicum annuum) and zucchini squash (Cucurbita pepo) cropping stands out. Mexico is considered one of the major exporting countries of these horticultural products with a joint export value of the three crops estimated at more than MXN$65 million (SADER, 2020). As for green chili pepper, Mexico is one of the largest producing countries. In 2019, Mexico exported 3, 239,244 tons of chili and bell peppers (SADER, 2020). The most important producing states are Chihuahua, Jalisco, Michoacán, San Luis Potosí, Sinaloa, and Zacatecas. In the states of Jalisco and Michoacán alone, the value of green chili pepper production in 2019 reached more than MXN$3,144 million with a joint production area of 8,793.51 ha. In Michoacán, chili pepper production is concentrated in the municipalities of Queréndaro, Tanhuato, Vista Hermosa and Yurécuaro. However, the factor that limits this crop in most of these states is chili wilt, a disease caused by P. capsici (Castro-Rocha et al., 2012; García-Rodríguez et al., 2010).

This phytopathogen is one of the most important species of the Phytophthora genus in the world, because it affects at least 50 species of cultivable plants and causes significant production losses (Bautista-Calles et al., 2010). Hosts of commercial interest include chili pepper (C. annuum), tomato (S. lycopersicum), pumpkin (C. pepo), watermelon (Citrullus lanatus), melon (Citrullus melo) and cucumber (Cucumis sativus) (Granke et al., 2012; Quesada-Ocampo and Hausbeck, 2010; Tian and Babadoost, 2004). Currently, 94 hosts of 27 botanical families are known, and new hosts are recorded every year (Reis et al., 2018). Phytophthora capsici is considered one of the pathogens of greatest scientific interest because of its rate of evolution, genetic diversity, rapid dispersion, adaptation to new hosts and environments, and because it could pose a threat to global food security (Kamoun et al., 2015; Lamour et al., 2012).

For this reason, in Mexico, different studies about the presence, genetic diversity and biological diversity of the pathogen have been conducted, as well as efforts to identity resistant varieties (Castro-Rocha et al., 2016; Gómez-Rodríguez et al., 2017; Morán-Bañuelos et al., 2010; Palma-Martínez et al., 2017; Pons-Hernández et al., 2020; Reyes-Tena et al., 2017). These studies have been conducted using isolates from producing areas of the states of Aguascalientes, Chihuahua, and Guanajuato, but there are no studies about the pathogen’s presence or distribution nor their host range in economically important crops of the Solanaceae and Cucurbitaceae families in the major production areas of Jalisco and Michoacán. This information is needed to prevent the application of chemical products against other pathogens that cause wilt, such as Fusarium spp. or Rhizoctonia sp. (Anaya-López et al., 2011; Rivera-Jiménez et al., 2018; Velarde-Félix et al., 2018). The objectives of this study were to identify and morphologically characterize the isolates obtained from cucurbitaceae and solanaceae crops causing “wilt” in Jalisco and Michoacán, Mexico.

MATERIALS AND METHODS

Soil and infected plant tissue sampling. In 2016 and 2017, samples were collected at the municipalities of Copándaro, Morelia, Queréndaro, Tarímbaro, Vista Hermosa and Yurécuaro, Michoacán; and La Barca, Jalisco (Figure 1). The samples were taken from root, crown, and stem sections (10-20 cm long), and soil from a plot where solanaceae and cucubitaceae had been previously cultivated (Figure 2). In these municipalities, chili pepper is cultivated every year, except in Queréndaro, where rotation with grains and other crops is practiced for 3-5 years, and Morelia, where zucchini-type squash (C. pepo) is mainly grown. The soils collected in Queréndaro plots were loam to loam-sandy; loam-clay-sandy in Copándaro, Morelia and Tarímbaro; and loam-clay in Yurécuaro and La Barca. Drip irrigation was applied to the plots. Poblano is the type of chili most cultivated in the areas where samples were collected, and, to a lesser degree, pasilla, serrano, jalapeño, and güero-type chilis. Zucchini squash samples were collected in the study sites of the Morelia municipality, and tomato samples (S. lycopersicum) in the municipality of Tarímbaro; the rest were samples from serrano-type chili pepper crops.

Preliminary detection of Phytophthora using immunostrips. The samples of infected plant tissue were serologically tested to rapidly detect Phytophthora, including P. capsici, using immunostrips (InmunoStrip, Agdia®). According to the manufacturer’s instructions, approximately 25 g of necrotic root tissue were taken and placed in a saline solution, gentle friction was applied and the immunostrip was inserted. The positive samples were processed to isolate the pathogen. When isolation was performed in a plot in Queréndaro, where the result had been negative, Fusarium solani was detected (Reyes-Tena et al., 2019c).

Figure 1 Sites where solanaceae and cucurbitaceae showing wilt symptoms were collected. 

Figure 2 Solanaceae and cucurbitaceae crops showing wilt symptoms: a) zuchinni type-squash in Morelia; b) serrano chili in Tarímbaro; c) pasilla chili in Queréndaro; and d) poblano chili in Copándaro, Michoacán; e) poblano chili in La Barca, Jalisco; and f) poblano chili in Yurécuaro, Michoacán. 

Isolation of Phytophthora from soil. The soil samples were taken from the rhizosphere of C. annuum showing wilt symptoms in a plot located in Copándaro municipality. Each sample consisted of 100-150 g of soil collected at 10-15 cm depth; the samples were placed in a cooler and taken to the laboratory. To isolate Phytophthora, a bioassay using Rhododendron leaves as bait was established. For the bioassay, 10 g of soil and 20 mL of sterile distilled water were spread on Petri dishes 16 cm in diameter. The Rhododendron leaves were washed with soap and water, rinsed with sterile distilled water, and placed with the petiole submerged in the soil suspension in order to facilitate the pathogen’s invasion (Erwin and Ribeiro, 1996). The boxes were sealed with plastic paraffin (Parafilm®) and stored at 24 °C for 36-48 h or until the petiole became necrotic. Later on, the petiole was transferred to a NARPH medium with natamycin (0.02 g L-1), ampicillin (0.27 g L-1), rifampicin (0.01 g L-1), pentachloronitrobenzene (0.10 g L-1) and hymexazol (0.075 g L-1) and stored at 24 °C (Soto-Plancarte et al., 2017).

Isolation of Phytophthora using plant tissue. To favor Phytophthora isolation, pieces of root and stem were cut in the pathogen’s active growth zone, that is, pieces with the interface between necrosis and healthy tissue. The tissue pieces were disinfested with a 10% v/v solution of commercial chlorine (0.6% sodium hypochlorite active ingredient), rinsed with sterile distilled water, and placed on sterile blotting paper, according to the procedure described by Soto-Plancarte et al. (2017). The tissue pieces were placed in NARPH medium. Mycelial growth was observed 48-72 h later.

The obtained isolates were transferred to agar-water medium to be purified using the hyphal tip technique and then placed on an agar-corn meal medium. To determine if the isolates had contaminant bacteria, an agar disk containing mycelium was kept in a test tube with sterile Luria Bertani medium at 24 °C for 24 h; the isolate was considered free of bacteria when no turbidity was observed. When bacteria contamination was observed, the culture was transferred to agar-potato-dextrose medium with 0.14% tartaric acid (Soto-Plancarte et al., 2017). Then, medium disks with 5-7 days-old mycelium were transferred to microtubes containing sterile distilled water and kept at 15 °C. The isolates were deposited in the oomycetes collection (Plant Pathology Collection) of the Plant Pathology Laboratory, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo.

Comparative morphology of Phytophthora capsici isolates. The obtained isolates were grown on Agar-V8 medium and stored at 24 °C for 5-7 days. When growth covered the culture medium plates, pieces of approximately 1x1cm were cut. To induce the formation of sporangia, 15-18 mL of sterile distilled water were added, and the water was changed every 24 h for three days. To the isolates that formed few sporangia, non-sterile soil extract was added, and then they were left at 24 °C for 24 h (Almaraz-Sánchez et al., 2013). When the isolates sporulated, the asexual traits were described. The test to determine sporangia expiration was conducted as follows: a drop of water was deposited on a slide and then a piece of agar with mycelium was placed on the drop of water by slightly shaking it. Observations under an optical microscope were made at 40X amplification to record the pedicel caducity or persistence in sporangia. The data recorded were type of sporangiophore, form of sporangia, papilla and pedicel length, as well as the presence or absence of chlamydospores. On the other hand, all the isolates were growth tested on Agar-V8 medium at 35 °C for 48 h.

To determine the mating type, the isolates were crossed with two isolates of known mating type (A1 and A2) on Agar-V8 medium. The cultures were observed 5-10 days after inoculation to detect the formation of oospores. The type of oospore and antheridium was recorded. The results were compared to the interactive key described by Abad et al. (2019) for Phytophthora of the United States Department of Agriculture (USDA), which is available at http://idtools.org/id/phytophthora/index.php.

Pathogenicity test. The pathogenicity of seven isolates (CPV259, CPV260, CPV267, CPV271, CPV272, CPV277 and CPV279) was determined in a previous study (Reyes-Tena et al., 2019a). In this study, a group of seven isolates (CPV282, CPV290, CPV291, CPV293, CPV296, CPV297 and CPV301) was additionally selected to conduct pathogenicity tests. These 14 isolates corresponded to different hosts, municipalities both of Michoacán and Jalisco, and the two mating types. The production of inoculum and chili pepper seedlings was carried out following the protocol described by Reyes-Tena et al., (2019a). Planting and production of seedlings of the California Wonder susceptible variety was carried out in 100 cm3 six-cell trays filled with Mix 3 (Sunshine®) as substrate. The plants were inoculated with the pathogen 56 days after planting. Six plants per isolate were inoculated with 1 mL of a suspension of 1 x 10-4 zoospores mL-1, which was applied at the base of each plant’s stem using a 50 mL dosing syringe (Ape ®). The plants remained saturated with water for 24 h to favor infection. The appearance of symptoms was recorded, and the pathogen was re-isolated in NARPH selective medium.

RESULTS

A total of 41 Phytophthora spp. isolates from cucurbitaceae and solanaceae crops with a range of 20-80% wilt incidence were obtained (Table 1). Seventy-six percent of the isolates were recovered from samples collected in the municipalities of Copándaro, Morelia, Queréndaro and Yurécuaro, Michoacán.

Table 2 shows the description of the different sexual and asexual traits that were observed. The isolates had sporangia arranged in simple sympodia sporangiophores. Forty isolates showed caducous and papillated sporangia, and long pedicel; only the CPV-269 isolate had semi-papillated sporangia with medium-sized pedicel. Regarding the form of sporangia, 10 isolates had irregular or distorted form (Figure 3c). Overall, ellipsoid, ovoid and globose forms prevailed. The presence of globose and terminal chlamydospores (Figure 3d) was detected on the CPV-279 isolate. Eighty-eight percent of the isolates grew at 35 °C, except CPV-280, CPV-285, CPV-294, CPV-295 and CPV-296. All the isolates had plerotic oospores with amphyginous antheridia (Figure 3d). Forty isolates were heterothallic, and one was homothallic. In regard to the mating type, 21 isolates were of A1 type, and 19 of A2 type. Both were recovered from chili pepper plots at the municipalities of Copándaro, Queréndaro, Tarímbaro and Yurécuaro, Michoacán; and La Barca, Jalisco. A ratio of mating types close to 1:1 was found in the municipalities of Copándaro, La Barca, Tarímbaro and Yurécuaro. In Morelia, type A2 isolates were obtained.

In regard to the pathogenicity test, wilt symptoms were observed on the California Wonder variety at day three with the seven isolates that were inoculated; in all the cases, P. capsici was re-isolated to confirm the isolates pathogenicity.

DISCUSSION

P. capsici was identified as the causal agent in a total of 14 isolates (seven correspond to a pathogenicity test conducted in a previous study (Reyes-Tena et al., 2019a) and 27 are associated to wilt disease in cucurbitaceae and solanaceae crops in the Jalisco and Michoacán municipalities where samples were collected. The morphological identification was in agreement with the molecular identification in a sample of isolates (Reyes-Tena et al., 2019a; Reyes-Tena et al., 2019b). The isolates of this pathogen had the two mating types (A1 and A2) in a ratio close to 1:1 in four municipalities: Copándaro, La Barca, Tarímbaro and Yurécuaro. This result suggests that sexual reproduction could occur (Castro-Rocha et al., 2016). A similar result regarding the ratio of both mating types was reported in P. capsici populations recovered from crops in Aguascalientes, Chihuahua, Mexico City, State of Mexico, Guanajuato, Michoacán, Querétaro, and Zacatecas (Castro-Rocha et al., 2016; Fernández-Pavía et al., 2007; Pérez-Moreno et al., 2003; Silva-Rojas et al., 2009). A ratio of mating types close to 1:1 was also found in populations from China, the United States and South Africa (Bi et al., 2014; Fernández-Pavía et al., 2004; Gevens et al., 2007; Meitz et al., 2010; Yin et al., 2012). The presence of a single mating type (A2) in Morelia is comparable to that reported by Pérez-Moreno et al. (2003) with isolates obtained in Salvatierra, Guanajuato, where only A2 was found, as well as to studies using populations from Argentina, Spain, and Peru, where clonal populations were detected (Gobena et al., 2012; Hurtado-Gonzáles et al., 2008; Silvar et al., 2006). This suggests that the presence of the pathogen is recent and that no isolates with both mating types have been introduced. Eighty-eight percent of the isolates grew at 35 oC, a result that was similar to that obtained by Pons-Hernández et al., 2020, who reported 96% for isolates from Guanajuato.

Table 1.Phytophthora  isolates from solanaceae and cucurbitaceae showing wilt symptoms collected in Michoacán and Jalisco municipalities. 

Aislado Fuente Hospedante Municipio Año de colecta
CPV-259 z Suelo Capsicum annuum Copándaro Mich. 2016
CPV-260 Tejido C. annuum Copándaro Mich. 2016
CPV-261 Suelo C. annuum Copándaro Mich. 2016
CPV-262 Tejido C. pepo Morelia, Mich. 2016
CPV-263 Tejido C. pepo Morelia, Mich. 2016
CPV-264 Tejido C. annuum Copándaro Mich. 2016
CPV-265 Tejido C. pepo Morelia, Mich. 2016
CPV-266 Tejido C. annuum Copándaro Mich. 2016
CPV-267 Tejido C. pepo Morelia, Mich. 2016
CPV-268 Tejido C. pepo Morelia, Mich. 2016
CPV-269 Tejido C. pepo Morelia, Mich. 2016
CPV-270 Tejido C. annuum Tarímbaro, Mich. 2016
CPV-271 Tejido C. annuum Tarímbaro, Mich. 2016
CPV-272 Tejido C. annuum Tarímbaro, Mich. 2016
CPV-273 Tejido Solanum lycopersicum Tarímbaro, Mich. 2016
CPV-274 Tejido S. lycopersicum Tarímbaro, Mich. 2016
CPV-277 Tejido C. annuum Queréndaro, Mich. 2017
CPV-278 Tejido C. annuum Queréndaro, Mich. 2017
CPV-279 Tejido C. annuum Queréndaro, Mich. 2017
CPV-280 Tejido C. annuum Queréndaro, Mich. 2017
CPV-281 Tejido C. annuum Queréndaro, Mich. 2017
CPV-282 Tejido C. annuum Copándaro Mich. 2017
CPV-283 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-284 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-285 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-286 Tejido C. annuum La Barca, Jal. 2017
CPV-287 Tejido C. annuum Copándaro Mich. 2017
CPV-288 Tejido C. annuum Copándaro Mich. 2017
CPV-289 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-290 Tejido C. annuum La Barca, Jal. 2017
CPV-291 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-292 Tejido C. annuum La Barca, Jal. 2017
CPV-293 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-294 Tejido C. annuum Copándaro Mich. 2017
CPV-295 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-296 Tejido C. annuum Copándaro Mich. 2017
CPV-297 Tejido C. annuum Vista Hermosa, Mich. 2017
CPV-298 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-299 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-300 Tejido C. annuum Yurécuaro, Mich. 2017
CPV-301 Tejido C. annuum Yurécuaro, Mich. 2017

z Code of the oomycetes collection of the Plant Pathology Laboratory, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana of San Nicolás de Hidalgo.

Table 2. Comparative morphology of Phytophthora capsici isolates obtained from solanaceae and cucurbitaceae showing wilt symptoms collected in Michoacán and Jalisco municipalities. 

Aislado Esporangióforo Esporangios Presencia de clamidosporas Papila Pedicelo Oospora Anteridio Compatibilidadsexual Crec. a 35 °C
CPV-259 Simple simpódico Elipsoides, globosos, formas irregulares. Caducos. - Esporangios papilados (3.8 µm). Largo (45.6 µm). Plerótica Anfígino A1 +
CPV-260 Simple simpódico Elipsoides, globosos, bipapilados. Caducos. - Esporangios papilados (4.2 µm). Largo (38.7 µm). Plerótica Anfígino A2 +
CPV-261 Simple simpódico Elipsoides. Caducos. - Esporangios papilados ( 3.9µm). Largo (40.6 µm). Plerótica Anfígino A1 +
CPV-262 Simple simpódico Formas irregulares, globosos, bipapilados. Caducos. - Esporangios papilados (4.9µm). Largo (43.2µm). Plerótica Anfígino A2 +
CPV-263 Simple simpódico Globosos, formas irregulares, elipsoides. Caducos. - Esporangios papilados (4.1 µm). Largo (37.1 µm). Plerótica Anfígino A2 +
CPV-264 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (4.2 µm). Largo (38.9 µm). Plerótica Anfígino A1 +
CPV-265 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (3.8 µm). Largo (42.3 µm). Plerótica Anfígino A2 +
CPV-266 Simple simpódico Globosos y ovoides. Caducos. - Esporangios papilados (4.0 µm). Largo (32.4 µm). Plerótica Anfígino A1 +
CPV-267 Simple simpódico Elipsoides. Caducos. - Esporangios papilados ( 4.2 µm). Largo (36.2 µm). Plerótica Anfígino A2 +
CPV-268 Simple simpódico Elipsoides y globosos. Caducos. - Esporangios papilados (4.0 µm). Largo (46.2µm). Plerótica Anfígino A2 +
CPV-269 Simple simpódico Elipsoides y globosos. Caducos. - Esporangios semipa- pilados (3.2 µm). Mediano (18.6 µm). Plerótica Anfígino A2 +
CPV-270 Simple simpódico Elipsoides, ovoides. Caducos. - Esporangios papilados ( 4.2µm). Largo (38.6µm). Plerótica Anfígino A2 +
CPV-271 Simple simpódico Ovoides, globosos, formas irregulares, bipapilados. Caducos. - Esporangios papilados (<4.3µm). Largo (43.8µm). Plerótica Anfígino A1 +
CPV-272 Simple simpódico Ovoides, elipsoides, bipapilados. Caducos. - Esporangios papilados (<4.2µm). Largo (45.6µm). Plerótica Anfígino A2 +
CPV-273 Simple simpódico Elipsoides, ovoides. Caducos. - Esporangios papilados (4.38µm). Largo (51.9µm). Plerótica Anfígino A1 +
CPV-274 Simple simpódico Ovoides, elipsoides, bipapilados, formas irregulares. Caducos - Esporangios papilados (3.85µm). Largo (45.7µm). Plerótica Anfígino A1 +
CPV-275 Simple simpódico Elipsoides, globosos, limoniformes. Caducos. - Esporangios papilados (3.5µm). Largo (41.9µm). Plerótica Anfígino A1 +
CPV-277 Simple simpódico Ovoides, formas irregulares, bipapilados. Caducos. - Esporangios papilados (3.9µm). Largo ( 62.0µm). Plerótica Anfígino A1 +
CPV-278 Simple simpódico Ovoides, bipapilados. Caducos. - Esporangios papilados (4.3µm). Largo (47.5µm). Plerótica Anfígino A1 +
CPV-279 Simple simpódico Elipsoides y ovoides. Caducos. + Esporangios papilados (4.1µm). Largo (56.4µm). Plerótica Anfígino A2 +
CPV-280 Simple simpódico Elipsoides, globosos, bipapilados. Caducos. - Esporangios papilados (3.8µm). Largo (36.8µm). Plerótica Anfígino A1 -
CPV-281 Simple simpódico Globosos, obpiriformes, ovoides. Caducos. - Esporangios semipapilados (2.83µm). Largo (57.5µm). Plerótica Anfígino A1 +
CPV-282 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (4.1µm). Largo (65.0µm). Plerótica Anfígino A2 +
CPV-283 Simple simpódico Elipsoides, globosos. Caducos. - Esporangios papilados (3.6 µm). Largo (38.8µm). Plerótica Anfígino A2 +
CPV-284 Simple simpódico Elipsoides, globosos, bipapilados. Caducos. - Esporangios papilados (3.7 µm). Largo (42.8µm). Plerótica Anfígino A1 +
CPV-285 Simple simpódico Elipsoides, ovoides. Caducos. - Esporangios papilados (3.9 µm). Largo (53.3µm). Plerótica Anfígino A2 -
CPV-286 Simple simpódico Elipsoides, ovoides. Caducos. - Esporangios papilados (4.1 µm). Largo (30.7µm). Plerótica Anfígino Homotálico +
CPV-287 Simple simpódico Elipsoides, globosos, bipapilados. Caducos. - Esporangios papilados (4.3 µm). Largo (65.0µm). Plerótica Anfígino A2 +
CPV-288 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (4.7 µm). Largo (58.5µm). Plerótica Anfígino A1 +
CPV-289 Simple simpódico Elipsoides y globosos. Caducos. - Esporangios papilados (4.3 µm) Largo (74.8µm) Plerótica Anfígino A2 +
CPV-290 Simple simpódico Elipsoides, globosos, formas irregulares. Caducos. - Esporangios papilados (4.4 µm) Largo (34.5µm) Plerótica Anfígino A2 +
CPV-291 Simple simpódico Ovoides, elipsoides. Caducos. - Esporangios papilados (4.3 µm) Largo (52.3µm) Plerótica Anfígino A1 +
CPV-292 Simple simpódico Ovoides, elipsoides. Caducos. - Esporangios papilados (4.2 µm) Largo (62.7µm) Plerótica Anfígino A1 +
CPV-293 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (3.8 µm) Largo (41.4µm) Plerótica Anfígino A1 +
CPV-294 Simple simpódico Globosos, elipsoides, formas irregulares. Caducos. - Esporangios papilados (4.3 µm) Largo (41.5µm) Plerótica Anfígino A2 -
CPV-295 Simple simpódico Elipsoides, globosos. Caducos. - Esporangios papilados (4.3µm) Largo (29.8µm) Plerótica Anfígino A1 -
CPV-296 Simple simpódico Elipsoides, globosos, formas irregulares. Caducos. - Esporangios papilados (4.7 µm) Largo (37.3µm) Plerótica Anfígino A1 -
CPV-297 Simple simpódico Elipsoides, formas irregulares. Caducos. - Esporangios papilados (3.9 µm) Largo (48.4µm) Plerótica Anfígino A1 +
CPV-298 Simple simpódico Globosos, ovoides, elipsoides. Caducos. - Esporangios papilados (3.9 µm) Largo (43.2µm) Plerótica Anfígino A2 +
CPV-299 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (4.3 µm) Largo (31.3µm) Plerótica Anfígino A1 +
CPV-300 Simple simpódico Ovoides, elipsoides. Caducos. - Esporangios papilados (4.2 µm) Largo (41.1µm) Plerótica Anfígino A2 +
CPV-301 Simple simpódico Elipsoides. Caducos. - Esporangios papilados (3.9 µm) Largo (33.5µm) Plerótica Anfígino A2 +

Figure 3  Phytophthora capsici sexual and asexual structures: a) simple sympodia sporangiophore; b) papillated and ellipsoid sporangia; c) sporangia with irregular forms; d) plerotic oospores with amphyginous antheridium; e) globose and terminal chlamydospores; and f) expired caducous sporangium. 

The sexual reproduction observed on P. capsici populations in cucurbitaceae and solanaceae crops in Jalisco and Michoacán could favor the survival and emergence of greater genetic variability within the pathogen’s populations in this Mexican region and thus hinder the management programs efforts (Babadoost and Pavon, 2013; Lamour and Hausbeck, 2000). Although there is information about a high level of genetic diversity in populations from central Mexico (Castro-Rocha et al., 2016), it is necessary to consider additional genetic factors that could cause variability, since the high level of P. capsici polymorphism could be mediated by other processes that produce variability, such as mutations, genetic recombination, epigenetic processes, and horizontal gene and chromosome transfer (Raffaele and Kamoun, 2012). Another unfavorable factor in wilt management is the practice of susceptible crops rotation, such as C. pepo and S. lycopersicum. Crop rotation with non-susceptible hosts in 3-5-year periods is preferred in order to reduce the levels of the pathogen’s inoculum (Barchenger et al., 2018).

The form of sporangia observed on this study agrees with the description for P. capsici, which develop varied forms, ranging from ovoid, ovo-ovoid, sub-globose, globose, ellipsoid, fusiform, piriform, to irregular forms, as well as the frequent presence of bi-papillated sporangia (Li et al., 2007; Soto-Plancarte et al., 2017). The C. pepo isolates had sporangia with irregular or distorted forms, a fact that reflects the phenotypic plasticity of this species (Iribarren et al., 2015). On the other hand, the CPV-269 isolate had semi-papillated sporangia with pedicel medium in size, which is a typical characteristic of P. capsici, and short, medium, and large pedicels (Granke et al., 2011; Martin et al., 2012). Semi-papillated sporangia have been previously reported in P. capsici isolates (French-Monar et al., 2006). In this study, the CPV-279 isolate that was obtained from C. annuum had apical globose chlamydospores; this isolate was previously identified as P. capsici at the molecular level by sequencing the cytochrome oxidase genes 1 and 2 (Reyes-Tena et al., 2019a). The presence of chlamydospores is an unusual characteristic in P. capsici and is not considered in the description of the interactive key for this species (Aragaki and Uchida, 2001; Bowers et al., 2007; Donahoo and Lamour, 2008; Martin et al., 2012). However, there are several reports of P. capsici forming these structures in the United States and Malaysia (Farhana et al., 2013; Granke et al., 2011; Islam et al., 2004). For this reason, the high level of phenotypic variability that this pathogen shows could be associated with the location and the host from which they were obtained, but more studies need to be conducted to confirm this fact.

CONCLUSIONS

The results provide information about the presence and distribution of P. capsici in solanaceae (35 isolates) and cucurbitaceae (six isolates) producing areas in Michoacán and Jalisco municipalities. Thirty-three isolates from C. annuum, six from C. pepo, and two from S. lycopersicum were obtained. Since no previous studies have been conducted in these production areas, the information provided in this research will help horticultural producers to adopt preventive measures and apply specific products to combat this pathogen.

Acknowledgments

The first author of this study wishes to thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship granted for his Ph.D. studies.

REFERENCES

Abad ZG, Burgess T, Bienapfl JC, Redford AJ, Coffey M and Knight L. 2019. IDphy: Molecular and morphological identification of Phytophthora based on the types. USDA APHIS PPQ S&T Beltsville Lab, USDA APHIS PPQ S&T ITP, Centre for Phytophthora Science and Management, and World Phytophthora Collection. http://idtools.org/id/phytophthora/tabular_key.phpLinks ]

Almaraz-Sánchez A, Alvarado-Rosales D y Saavedra-Romero LL. 2013. Trampeo de Phytophthora cinnamomi en bosque de encino con dos especies ornamentales e inducción de su esporulación. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 19(1): 5-12. http://dx.doi.org/10.5154/r.rchscfa.2011.09.062 [ Links ]

Anaya-López JL, González-Chavira MM, Villordo-Pineda E, Rodríguez-Guerra R, Rodríguez-Martínez R, Guevara-González RG, Guevara-Olvera L, Montero-Tavera V y Torres-Pacheco I. 2011. Selección de genotipos de chile resistentes al complejo patogénico de la marchitez. Revista Mexicana de Ciencias Agrícolas 2(3): 373-383. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000300006&lng=es&nrm=iso&tlng=esLinks ]

Aragaki M and Uchida JY. 2001. Morphological distinctions between Phytophthora capsici and P. tropicalis sp. nov. Mycologia 93(1): 137-145. https://www.jstor.org/stable/3761611Links ]

Babadoost M and Pavon C. 2013. Survival of oospores of Phytophthora capsici in soil. Plant Disease 97(11): 1478-1483. https://doi.org/10.1094/PDIS-12-12-1123-RELinks ]

Barchenger DW, Lamour KH and Bosland PW. 2018. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Frontiers in Plant Science 9: 628. https://doi.org/10.3389/fpls.2018.00628 [ Links ]

Bautista-Calles JR, García-Espinosa R, Zavaleta-Mejía E, Pérez-Moreno J, Montes-Belmont R, Ferrera-Cerrato R and Huerta-Lara M. 2010. Disminución de la marchitez del chile (Phytophthora capsici Leo) con complejidad ascendente de antagonistas en el sustrato de germinación del chile (Capsicum annuum L.). Interciencia 35(9): 613-618. https://www.redalyc.org/pdf/339/33914212007.pdf [ Links ]

Bi Y, Hu J, Cui X, Shao J, Lu X, Meng Q, and Liu X. 2014. Sexual reproduction increases the possibility that Phytophthora capsici will develop resistance to dimethomorph in China. Plant Pathology 63(6): 1365-1373. https://doi.org/10.1111/ppa.12220Links ]

Bowers JH, Martin FN, Tooley PW and Luz EDMN. 2007. Genetic and morphological diversity of temperate and tropical isolates of Phytophthora capsici. Phytopathology 97(4): 492-503. https://doi.org/10.1094/PHYTO-97-4-0492 [ Links ]

Castro-Rocha A, Fernández-Pavía SP y Osuna-Ávila P. 2012. Mecanismos de defensa del chile en el patosistema Capsicum annuum-Phytophthora capsici. Revista Mexicana de Fitopatología 30(1): 49-65. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092012000100005&lng=es&nrm=isoLinks ]

Castro-Rocha A, Shrestha S, Lyon B, Grimaldo-Pantoja GL, Flores-Marges JP, Valero-Galván J, Aguirre-Ramírez M, Osuna-Ávila P, Gómez-Dorantes N, Ávila-Quezada G, Luna-Ruiz JJ, Rodríguez-Alvarado G, Fernández-Pavía SP and Lamour K. 2016. An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycological Progress 15:15. https://doi.org/10.1007/s11557-016-1157-0 [ Links ]

Donahoo RS and Lamour KH. 2008. Interspecific hybridization and apomixes between Phytophthora capsici and Phytophthora tropicalis. Mycologia 100(6): 911-920. https://doi.org/10.3852/08-028 [ Links ]

Erwin DC and Ribeiro OK. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society Press. St. Paul, Minnesota. 562 p. [ Links ]

Farhana MDSN, Bivi MR, Khairulmazmi A, Wong SK and Sariah M. 2013. Morphological and molecular characterization of Phytophthora capsici, the causal agent of foot rot disease of black pepper in Sarawak, Malaysia. International Journal of Agriculture and Biology 15(6) 1083-1090. http://www.fspublishers.org/published_papers/70113_..pdfLinks ]

Fernández-Pavía SP, Biles CL, Waugh ME, Onsurez-Waugh K, Rodríguez-Alvarado G and Lidell CM. 2004. Characterization of southern New Mexico Phytophthora capsici Leonian isolates from pepper (Capsicum annuum L.). Revista Mexicana de Fitopatología 22(1): 82-89. https://www.redalyc.org/articulo.oa?id=61222111Links ]

Fernández-Pavía SP, Rodríguez-Alvarado G and Sánchez-Yáñez JM. 2007. Buckeye rot of tomato caused by Phytophthora capsici in Michoacan, Mexico. Plant Disease 87(7): 872-872. https://doi.org/10.1094/PDIS.2003.87.7.872C [ Links ]

French-Monar RD, Jones JB and Roberts PD. 2006. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Disease 90(3): 345-350. https://doi.org/10.1094/PD-90-0345Links ]

García-Rodríguez MR, Chiquito-Almanza E, Loeza-Lara PD, Godoy-Hernández H, Villordo-Pineda E, Pons-Hernández JL, González-Chavira J y Anaya-López JL. 2010. Producción de chile ancho injertado sobre Criollo de Morelos 334 para el control de Phytophthora capsici. Agrociencia 44(6): 701-709. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952010000600009&lng=es&nrm=isoLinks ]

Gevens AJ, Donahoo RS, Lamour KH and Hausbeck MK. 2007. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology 97(4): 421-428. https://doi.org/10.1094/PHYTO-97-4-0421 [ Links ]

Gobena D, Roig J, Galmarini C, Hulvey J and Lamour K. 2012. Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia 104(1): 102-107. https://doi.org/10.3852/11-147Links ]

Gómez-Rodríguez O, Corona-Torres T and Aguilar-Rincón VH. 2017. Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes. Crop Protection 92 (2):148-152. https://doi.org/10.1016/j.cropro.2016.10.023 [ Links ]

Granke LL, Quesada-Ocampo LM and Hausbeck MK. 2011. Variation in phenotypic characteristics of Phytophthora capsici isolates from a worldwide collection. Plant Disease 95(9): 1080-1088. https://doi.org/10.1094/PDIS-03-11-0190 [ Links ]

Granke LL, Quesada-Ocampo L, Lamour K and Hausbeck MK. 2012. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease 96(11): 1588-1600. https://doi.org/10.1094/PDIS-02-12-0211-FELinks ]

Hurtado-Gonzáles O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R and Lamour K. 2008. Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology 98(6): 688-694. https://doi.org/10.1094/PHYTO-98-6-0688 [ Links ]

Iribarren MJ, Pascuan C, Soto G and and Ayub ND. 2015. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island. FEMS Microbiology Letters 362(22): 1-6. https://doi.org/10.1093/femsle/fnv189 [ Links ]

Islam SZ, Babadoost M, Lambert NK, Ndeme A and Fouly HM. 2004. Characterization of Phytophthora capsici isolates from processing pumpkin in Illinois. Plant Disease 89(2): 191-197. https://doi.org/10.1094/PD-89-0191 [ Links ]

Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DFA, Tör M, Van den ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJG, Petre B, Ristaino J, Yoshida K, Birch PRJ and Govers F. 2015. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16(4): 413-434. https://doi.org/10.1111/mpp.12190Links ]

Lamour KH and Hausbeck MK. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90(4): 396-400. https://doi.org/10.1094/PHYTO.2000.90.4.396 [ Links ]

Lamour KH, Stam R, Jupe J and Huitema E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology 13(4): 319-337. https://doi.org/10.1111/j.1364-3703.2011.00754.x [ Links ]

Li Z, Long W, Zheng J and Lei J. 2007. Isolation and identification of Phytophthora capsici in Guangdong Province and measurement of their pathogenicity and physiological race differentiation. Frontiers of Agriculture in China 1(4): 377-381. https://doi.org/10.1007/s11703-007-0063-2 [ Links ]

Martin FN, Abad ZG, Balci Y and Ivors K. 2012. Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Disease 96(8): 1080-1103. https://doi.org/10.1094/PDIS-12-11-1036-FE [ Links ]

Meitz JC, Linde CC, Thompson A, Langenhoven S and McLeod A. 2010. Phytophthora capsici on vegetable hosts in South Africa: distribution, host range and genetic diversity. Australasian Plant Pathology 39(5): 431-439. http://link.springer.com/10.1071/AP09075Links ]

Morán-Bañuelos SH, Aguilar-Rincón VH, Corona-Torres T y Zavaleta-Mejía E. 2010. Resistencia a Phytophthora capsici Leo. de chiles nativos del sur de Puebla, México. Revista Fitotecnia Mexicana 33(4): 21-26. http://www.scielo.org.mx/scielo.php?script=sci_isoref&pid=S0187-73802010000500006&lng=es&tlng=esLinks ]

Palma-Martínez E, Aguilar-Rincón VH, Corona-Torres T and Gómez-Rodríguez O. 2017. Resistencia a Phytophthora capsici Leo en líneas de chile huacle (Capsicum annuum L.). Revista Fitotecnia Mexicana 40(3): 359-363. https://www.revistafitotecniamexicana.org/documentos/40-3/13a.pdfLinks ]

Pérez-Moreno L, Durán-Ortiz LJ, Ramírez-Malagón R, Sánchez-Pale JR y Olalde-Portugal V. 2003. Compatibilidad fisiológica y sensibilidad a fungicidas de aislamientos de Phytophthora capsici Leo. Revista Mexicana de Fitopatología 21(1): 19-25. https://www.redalyc.org/articulo.oa?id=61221103Links ]

Pons-Hernández JL, Guerrero-Aguilar BZ, González-Chavira MM, González-Pérez E, Villalobos-Reyes S y Muñoz-Sánchez CI. 2020. Variabilidad fenotípica de aislados de Phytophthora capsici en Guanajuato. Revista Mexicana de Ciencias Agrícolas 11(8): 1891-1901. https://doi.org/10.29312/remexca.v11i8.2618. [ Links ]

Quesada-Ocampo LM and Hausbeck MK. 2010. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. Phytopathology 100(6): 619-627. https://doi.org/10.1094/PHYTO-100-6-0619 [ Links ]

Raffaele S and Kamoun S. 2012. Genome evolution in filamentous plant pathogens: Why bigger can be better. Nature Reviews Microbiology 10(6): 417-430. https://doi.org/10.1038/nrmicro2790 [ Links ]

Reis A, Paz-Lima ML, Moita AW, Aguiar FM, Fonseca MEN, Café-Filho AC and Boiteux LS. 2018. A reappraisal of the natural and experimental host range of neotropical Phytophthora capsici isolates from Solanaceae, Cucurbitaceae, Rosaceae and Fabaceae. Journal of Plant Pathology 100: 215-223. https://doi.org/10.1007/s42161-018-0069-z [ Links ]

Reyes-Tena A, Rincón-Enríquez G, López-Pérez L and Quiñones-Aguilar EE. 2017. Effect of mycorrhizae and actinomycetes on growth and bioprotection of Capsicum annuum L. against Phytophthora capsici. Pakistan Journal of Agricultural Sciences 54(3): 513-522. https://www.pakjas.com.pk/papers/2730.pdfLinks ]

Reyes-Tena A, Castro-Rocha A, Rodríguez-Alvarado G, Vázquez-Marrufo G, Pedraza-Santos ME, Lamour K, Larsen J and Fernández-Pavía SP. 2019a. Virulence phenotypes on chili pepper for Phytophthora capsici isolates from Michoacán, Mexico. HortScience 54(9): 1526-1531. https://doi.org/10.21273/HORTSCI13964-19 [ Links ]

Reyes-Tena A, Huguet-Tapia JC, Lamour KH, Goss EM, Rodríguez-Alvarado G, Vázquez-Marrufo G, Santillán-Mendoza R and Fernández-Pavía SP. 2019b. Genome sequence data of six isolates of Phytophthora capsici from Mexico. Molecular Plant-Microbe Interactions 32(10): 1267-1269. https://doi.org/10.1094/MPMI-01-19-0014-ALinks ]

Reyes-Tena A, Rodríguez-Alvarado G, Santillán-Mendoza R, Díaz-Celaya M y Fernández-Pavía SP. 2019c. Marchitez causada por Fusarium solani en chile chilaca (Capsicum annuum) en Michoacán. Revista Mexicana de Fitopatología 37(1): 43-47. http://dx.doi.org/10.18781/R.MEX.FIT.1904-1 [ Links ]

Rivera-Jiménez MN, Zavaleta-Mancera HA, Rebollar-Alviter A, Aguilar-Rincón VH, García-de-los-Santos G, Vaquera-Huerta H and Silva-Rojas HV. 2018. Phylogenetics and histology provide insight into damping-off infections of ‘Poblano’ pepper seedlings caused by Fusarium wilt in greenhouses. Mycological Progress 17: 1237-1249. https://doi.org/10.1007/s11557-018-1441-2 [ Links ]

SADER, Secretaría de Agricultura y Desarrollo Rural. 2020 Servicio de información agroalimentaria y pesquera. https://www.gob.mx/siap (consulta, julio 2020). [ Links ]

Silva-Rojas HV, Fernández-Pavía SP, Góngora-Canul C, Macías-López BC y Ávila-Quezada GD. 2009. Distribución espacio temporal de la marchitez del chile (Capsicum annuum L) en Chihuahua e identificación del agente causal Phytophthora capsici Leo. Revista Mexicana de Fitopatología 27(2): 134-147. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092009000200006Links ]

Silvar C, Merino F and Díaz J. 2006. Diversity of Phytophthora capsici in northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease 90(9): 1135-1142. https://doi.org/10.1094/PD-90-1135 [ Links ]

Soto-Plancarte A, Rodríguez-Alvarado G, Fernández-Pavía YL, Pedraza-Santos ME, López-Pérez L, Díaz-Celaya M y Fernández-Pavía SP. 2017. Protocolos de aislamiento y diagnóstico de Phytophthora spp. enfoque aplicado a la investigación. Revista Mexicana de Ciencias Agrícolas 8(8): 1867-1880. https://www.redalyc.org/articulo.oa?id=263153822011Links ]

Velarde-Félix S, Garzón-Tiznado JA, Hernández-Verdugo S, López-Orona CA and Retes-Manjarrez JE. 2018. Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Canadian Journal of Plant Pathology 40(2): 238-247. https://doi.org/10.1080/07060661.2017.1420693Links ]

Yin J, Jackson KL, Candole BL, Csinos AS, Langston DB and Ji P. 2012. Aggressiveness and diversity of Phytophthora capsici on vegetable crops in Georgia. Annals Applied of Biology 160(2): 191-200. https://doi.org/10.1111/j.1744-7348.2012.00532.x [ Links ]

Received: July 27, 2020; Accepted: December 12, 2020

*Autor para correspondencia: fpavia@umich.mx.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons