SciELO - Scientific Electronic Library Online

 
vol.36 número2Efecto del pH y temperatura sobre el crecimiento y actividad antagónica de Bacillus subtilis sobre Rhizoctonia solaniAlteraciones anatómicas e hiperplasia inducidas por Euphorbia mosaic virus aislamiento Yucatán Península en el mesófilo índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de fitopatología

versão On-line ISSN 2007-8080versão impressa ISSN 0185-3309

Rev. mex. fitopatol vol.36 no.2 Texcoco Mai./Ago. 2018

https://doi.org/10.18781/r.mex.fit.1712-3 

Phytopathological notes

Pathogenicity of Magnaporthe oryzae in varieties and wheat lines grown in Paraguay

Alice Rocío Chávez1  * 

Man Mohan-Kohli2 

1Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas CAPECO, Centro de Investigación Hernando Bertoni, Caacupé, Paraguay

2Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas CAPECO, Av. Brasilia 840, Asunción, Paraguay.


Abstract

Wheat blast caused by Magnaporthe oryzae pathotype Triticum has become one of the most important crop production problems in South America. Given the availability of few sources of resistance, the identification of newer sources has become urgent. The present study was designed to evaluate the reaction of major wheat varieties grown in Paraguay to M. oryzae infection. Thirty-two wheat varieties and four advanced breeding lines were provided by the National Wheat Program of the Paraguayan Institute of Agrarian Technology. These varieties were spray inoculated with three isolates of M. oryzae using 5.104 conidia mL-1. The disease reaction was evaluated on a severity scale of 0-4, 15 days after inoculation. Data were analyzed using the Kruskal-Wallis test. Considering the median rating of infection, the materials were classified as Resistant (0-1), Moderately Resistant (1.1-2), Moderately Susceptible (2.1-3) and Susceptible (3.1-4). The variety Canindé 1 was resistant to all isolates, and CD 116 was resistant to one and moderately resistance to two isolates. All the remaining varieties were susceptible or moderately susceptible to the three isolates, showing the susceptibility of major wheat varieties grown in Paraguay, and an urgent need for widening the genetic basis of resistance to wheat blast disease in the National Wheat Breeding Program.

Key words: Pyricularia; resistance; Triticum

Resumen

El brusone causado por Magnaporthe oryzae patotipo Triticum, es uno de los problemas más serios para la producción de trigo en Sudamérica. Debido al número reducido de fuentes de resistencia, la identificación de nuevas fuentes es de suma importancia. En este trabajo se evaluó la reacción de las variedades de trigo sembradas en Paraguay a la infección por M. oryzae. Treinta y dos variedades y cuatro líneas avanzadas del Programa Nacional de Investigación de Trigo del Instituto Paraguayo de Tecnología Agraria se inocularon con tres cepas, mediante aspersión, con una suspensión de 5 x 104 conidios mL-1. La evaluación se realizó a los 15 días utilizando una escala de severidad de 0-4. Los datos se analizaron mediante la prueba de Kruskal-Wallis. Con base en las medianas de severidad, los materiales se clasificaron como Resistentes (0-1), Moderadamente Resistentes (1.1-2), Moderadamente susceptibles (2.1-3) y Susceptibles (3.1-4). La variedad Canindé 1 fue resistente a las tres cepas, mientras CD 116 fue resistente a uno y moderadamente resistente a dos. Los demás genotipos fueron susceptibles y moderadamente susceptibles a las tres cepas, demostrando la susceptibilidad de las variedades sembradas en Paraguay y la necesidad de ampliar la base de resistencia en el programa nacional de mejoramiento.

Palabras clave: Pyricularia; resistencia; Triticum

Wheat blast or brusone caused by Magnaporthe oryzae pathotype Triticum (MoT) is one of the most serious problems for wheat production in the tropical/subtropical region of South America. The disease appeared for the first time in northern Paraná, Brazil in 1985 (Igarashi et al., 1986) and was later detected in Paraguay in 1989 (Cunfer et al., 1993). However, the first blast epidemic was reported in 2002 and caused production losses greater than 70% in early-sown fields (Viedma and Morel, 2002). The environmental conditions that favor blast epidemics are temperatures between 18 and 25°C and high relative humidity during heading and flowering, usually during the El Niño phenomenon (Kohli et al., 2011; Cunha et al., 2017).

Given that wheat blast is a disease that is difficult to control, its management must include the use of resistant wheat varieties along with chemical control practices to reduce production losses. However, it has been difficult to develop resistant varieties due to the low number of available resistance sources. Some varieties derived from CIMMYT’s Milan line have shown high levels of resistance to wheat blast (Kohli et al., 2011). Recently, (Cruz et al., 2016) determined that the 2NS translocation, derived from Triticum ventricosum, is responsible for conferring resistance to Milan and other derived varieties. For this reason, identifying different resistance sources and characterizing the reaction of new genotypes are considered of vital importance. This study was conducted to evaluate the reaction of Paraguayan wheat varieties to Magnaporthe oryzae infection, as well as that of several advanced lines developed in the country and the main foreign varieties currently sown in Paraguay.

The trial was conducted in the greenhouse of the Centro de Investigación Hernando Bertoni, Instituto Paraguayo de Tecnología Agraria, (IPTA) in Caacupé, Paraguay (south latitude 25°23’25.314”, west longitude 57°11’27.848”). The trial included 32 wheat varieties and four advanced lines provided by the IPTA’s Programa Nacional de Investigación de Trigo (Table 1), all of them currently sown in Paraguay. The varieties were sown on 12 April 2016 in 15x25 cm plastic pots containing a substratum made up of soil and leaf mulch at a 3:1 ratio. Two plants per pot were sown for each fungus isolate, and four pots were planted for each variety. Each pot was considered a replication. The greenhouse was kept at a temperature of 15 ± 2°C, and the agronomic management consisted of one 15-15-15 fertilizer application at a dose of 5 g per pot 15 days after emergence, plus one application of urea 45 days after emergence using the same amount. Irrigation was applied twice a week, and the plants were monitored on a weekly basis to detect pests. Magnaporthe oryzae pathotype Triticum (MoT) isolates used in the study were taken from infected wheat spikes collected in the field, as follows: P13-009 was collected in Capitán Miranda, Itapúa, in the 2013 cycle; P14-025, in Yhovy, Canindeyú, in the 2014 cycle; and P14-039, in La Flor farm, Alto Paraná, in 2014. These isolates were selected based on their virulence in previous trials and on their places of origin, which represent the main wheat production areas in Paraguay. The isolates were kept on filter paper at -18 °C as part of the isolates collection of the Pyricularia in Wheat Project. They were replicated in Petri dishes containing oatmeal flour agar culture medium and incubated for 10 days at 25°C and a 12-h photoperiod. The mycelium was later crushed using an L-shaped glass rod, and the dishes were exposed to continuous fluorescent light for three days to favor sporulation. Then, the spores were removed using a paint brush and sterile distilled water (Marangoni et al., 2013). The conidia concentration was adjusted with a Neubauer hemacytometer at 5x104 conidia ml-1 by adding sterile distilled water to dilute it (Chávez et al., 2015). Inoculation was performed when each variety reached stage 59 on Zadok’s scale, this is, when the spikes were completely out of the flag leaf sheath. Spikes were sprayed using a manual sprayer (three sprayings per spike). After the spikes were sprayed, the plants were kept in darkness for 24 h, at 80±5% moisture and 27±2°C temperature in a heated room in the greenhouse to favor infection. After that period, the plants were removed from the heated room and kept in the greenhouse, at the same temperature, 60 ± 5% moisture and 12-h photoperiod. Symptoms were observed and evaluated 15 days after inoculation. The scale proposed by Tagle et al. (2014) was adapted to evaluate infection severity on the spikes. This scale classifies symptoms as follows: 0 = no infection; 1 = small lesions, < 1.5 mm; 2 = intermediate lesions, < 3 mm; 3 = mixture of green and white glumes, without apparent necrosis, caused by a hypersensitive reaction; 4 = complete spike necrosis. Data were analyzed using Kruskal-Wallis’ test and the INFOSTAT (version 2016e) statistical program. Based on the infection means, on which the test is based, the genetic materials were classified as Resistant (0-1), Moderately resistant (1.1-2), Moderately susceptible (2.1-3) and Susceptible (3.1-4).

Table 1. Wheat varieties and lines used in the present study, including their genealogy and days to heading. 

Variedad Genealogía Espigazón (días)
Itapua 40a BOBWHITE/GENARO 81 73
Itapúa 70a RAYON//VEERY#6/TRAP1 72.5
Itapúa 75a VEERY''S''/RL6010/JUP73/3/PRL''S''/VEE#6//MYNA/VULTURE 78.5
Itapúa 80a WEEBILL1*2/TUKURU 69
Itapúa 85a MILVUS1/ITAPUA 60 75.5
Canindé 1a MILAN/MUNIA 71
Canindé 3a ITAPUA35/PF84432//CORDILLERA4 73
Canindé 11a BABAX/4/BOBWHITE/CROW//BUCBUC/PVN/3/VEERY#10/5/BABAX 71
Canindé 12a BABAX//PARULA/VEERY#10/3/BABAX/4/BABAX 70
Canindé 13a BABAX*3//PARULA/VEERY#10 69.5
Canindé 21a E 92225/FUNDACEP 30 79.5
E 97034/ITAPUA 45a E 97034/ITAPUA 45 71
ITAPUA 40 /IAN 10a ITAPUA 40 /IAN 10 74
ITAPUA75/WEBILL2a ITAPUA 75/WEBILL2 74
E92225/FUNDACEP30a E 92225/FUNDACEP30 75.5
BRS 208b CPAC89118/3/BR23//CEP19/PF85490 73
BRS 220b EMBRAPA16/TB108 71.5
GRALHA AZULb JUPATECO F73/EMBRAPA16//BRS CAMBOATÁ/LR37 76.5
BRS Pardelab TRIGO BR18/PF 9099 73
BRS Tangarab BR 23*2/PF 940382 75
CD 104b PFAU''S''/IAPAR17 77.5
CD 108b TAM200/TURACO 66
CD 116b MILAN/MUNIA 71.5
CD 150b CD 104/CD 108 69
CD 154b CD 104/CDI 200104 70.5
IPR 144b SERI*3/BUCBUC/5/BOBWHITE/3/CAR853/COCORAQUE//VEERY/4/OC22 78
IPR Catuarab LD875/IAPAR85 71
IPR 85b IAPAR30/TRIGOBR18 70
LE 2331b INIA TIJERETA/LE 2229 80.5
QUARZOb ONIX/AVANTE 79
TBIO Iguazub QUARZO//SAFIRA 81
TBIO Torukb MIRNTE/IBIO0901//QUARZO 80.5
TBIO Sintoníab Marfim/Quartzo//Marfim 79.5
TBIO Mestreb IBIO0810/Cronox//ORL00255 80.5
FUNDACEP 6219b GENEOLOGIA CERRADA 74.5
FUNDACEP RAICESb EMB 27/CEP 24/3/BUC''S''/FCT''S''//PF 85229 76

a Paraguayan wheat varieties and lines.

b Foreign varieties currently sown in Paraguay.

Significant statistical differences were found between the varieties and their interaction with the inoculated isolates (Table 2). For the P13-009 isolate, two varieties (Canindé 1, CD 116) were classified as resistant; three were moderately resistant (TBIO Toruk, TBIO Iguazu, TBIO Sintonía), and the rest were moderately susceptible and susceptible. For the P14-025 and P14-039 isolates only one variety was classified as resistant (Canindé 1), and two were moderately resistant (CD 116 and TBIO Sintonía). The rest were classified as moderately susceptible and susceptible. As for the Paraguayan varieties, Canindé 1 was the only one classified as resistant to the three inoculated isolates, while Itapúa 75 that was inoculated with isolate P14-025, and Canindé 3, with isolates P13-009 and P14-039, were moderately susceptible. The remaining varieties, as well as the four advanced lines evaluated, were susceptible. The interaction among varieties and the fungus isolates used is limited to intermediate cases, in which a variety classified as moderately resistant to an isolate shows a moderately susceptible reaction to another isolate, and vice versa (TBIO Iguazú, TBIO Toruk: MR P13-009; MS P14-025). This kind of interaction among wheat varieties and Magnaporthe isolates shows the specific reactions between the host and the pathogen that must be thoroughly studied in the future.

Table 2 Classification of wheat varieties and lines resistance to three Magnaporthe oryzae isolates, according to means and ranked using Kruskal-Wallis’ test. 

Genotipo

Cepa

Mediana

Clasificación

Ranks

Canindé 1

P13-009

1

R

19x

A

CD 116

P13-009

1

R

36.25

A

Canindé 1

P14-039

1

R

40.38

A

TBIO Iguazu

P13-009

2

MR

47.75

A

B

Canindé 1

P14-025

1

R

51.88

A

B

TBIO Sintonía

P13-009

2

MR

53.5

A

B

TBIO Sintonía

P14-039

1.5

MR

57.63

A

B

CD 116

P14-039

2

MR

59.25

A

B

CD 116

P14-025

2

MR

59.25

A

B

TBIO Sintonía

P14-025

2

MR

90.5

A

B

C

TBIO Toruk

P13-009

2

MR

111.88

A

B

C

TBIO Toruk

P14-025

2.5

MS

127.5

A

B

C

TBIO Toruk

P14-039

3

MS

158.75

A

B

C

D

CD 108

P13-009

3

MS

190

A

B

C

D

E

FUNDACEP RAICES

P14-025

3

MS

238.25

A

B

C

D

E

F

LE 2331

P14-025

3

MS

255.25

A

B

C

D

E

F

FUNDACEP 6219

P14-039

3

MS

286.5

B

C

D

E

F

G

QUARZO

P13-009

3

MS

286.5

B

C

D

E

F

G

BRS 220

P14-025

3

MS

286.5

B

C

D

E

F

G

Itapúa 75

P14-025

3

MS

320.5

C

D

E

F

G

Canindé 3

P13-009

3

MS

334.75

C

D

E

F

G

H

Canindé 3

P14-039

3

MS

334.75

C

D

E

F

G

H

FUNDACEP RAICES

P13-009

3

MS

334.75

C

D

E

F

G

H

IPR Catuara

P13-009

3

MS

334.75

C

D

E

F

G

H

CD 150

P13-009

3

MS

334.75

C

D

E

F

G

H

TBIO Iguazu

P14-025

3

MS

334.75

C

D

E

F

G

H

Itapúa 85

P14-039

3.5

S

383

D

E

F

G

H

TBIO Iguazu

P14-039

3.5

S

383

D

E

F

G

H

BRS Pardela

P13-009

3.5

S

383

D

E

F

G

H

QUARZO

P14-025

3.5

S

383

D

E

F

G

H

IPR85

P14-039

3.5

S

383

D

E

F

G

H

Canindé 21

P13-009

3.5

S

383

D

E

F

G

H

Canindé 13

P14-025

3.5

S

383

D

E

F

G

H

IPR Catuara

P14-025

3.5

S

383

D

E

F

G

H

QUARZO

P14-039

4

S

431.25

E

F

G

H

ITAPUA 40 /IAN 10

P14-039

4

S

431.25

E

F

G

H

IPR 144

P14-025

4

S

431.25

E

F

G

H

Itapúa 70

P14-039

4

S

431.25

E

F

G

H

E 97034/ITAPUA 45

P14-025

4

S

431.25

E

F

G

H

FUNDACEP RAICES

P14-039

4

S

431.25

E

F

G

H

IPR Catuara

P14-039

4

S

431.25

E

F

G

H

IPR85

P14-025

4

S

431.25

E

F

G

H

GRALHA AZUL

P14-025

4

S

431.25

E

F

G

H

E 97034/ITAPUA 45

P14-039

4

S

431.25

E

F

G

H

Canindé 21

P14-039

4

S

431.25

E

F

G

H

CD 108

P14-025

4

S

431.25

E

F

G

H

BRS 208

P14-039

4

S

479.5

F

G

H

Canindé 21

P14-025

4

S

479.5

F

G

H

Canindé 11

P14-039

4

S

479.5

F

G

H

Itapúa 70

P14-025

4

S

479.5

F

G

H

IPR85

P13-009

4

S

479.5

F

G

H

Canindé 3

P14-025

4

S

479.5

F

G

H

CD 154

P14-039

4

S

479.5

F

G

H

Itapúa 85

P14-025

4

S

479.5

F

G

H

TBIO Mestre

P13-009

4

S

479.5

F

G

H

FUNDACEP 6219

P13-009

4

S

479.5

F

G

H

CD 150

P14-025

4

S

479.5

F

G

H

ITAPUA 75/WEBILL2

P14-039

4

S

479.5

F

G

H

TBIO Mestre

P14-025

4

S

479.5

F

G

H

BRS Tangara

P14-025

4

S

479.5

F

G

H

CD 108

P14-039

4

S

479.5

F

G

H

Canindé 13

P13-009

4

S

527.75

G

H

Itapúa 40

P14-039

4

S

527.75

G

H

Itapúa 85

P13-009

4

S

527.75

G

H

ITAPUA 40 /IAN 10

P14-025

4

S

527.75

G

H

Canindé 13

P14-039

4

S

527.75

G

H

BRS Pardela

P14-025

4

S

527.75

G

H

BRS 220

P13-009

4

S

527.75

G

H

LE 2331

P14-039

4

S

527.75

G

H

BRS 208

P14-025

4

S

527.75

G

H

Canindé 12

P14-025

4

S

527.75

G

H

Canindé 12

P13-009

4

S

527.75

G

H

E92225/FUNDACEP30

P14-025

4

S

527.75

G

H

BRS 220

P14-039

4

S

576

H

TBIO Mestre

P14-039

4

S

576

H

Itapúa 75

P14-039

4

S

576

H

Itapúa 80

P13-009

4

S

576

H

BRS 208

P13-009

4

S

576

H

LE 2331

P13-009

4

S

576

H

BRS Pardela

P14-039

4

S

576

H

Itapúa 80

P14-039

4

S

576

H

Itapúa 80

P14-025

4

S

576

H

CD 154

P14-025

4

S

576

H

CD 154

P13-009

4

S

576

H

CD 150

P14-039

4

S

576

H

E 97034/ITAPUA 45

P13-009

4

S

576

H

E92225/FUNDACEP30

P14-039

4

S

576

H

E92225/FUNDACEP30

P13-009

4

S

576

H

BRS Tangara

P14-039

4

S

576

H

CD 104

P14-025

4

S

576

H

CD 104

P13-009

4

S

576

H

Canindé 12

P14-039

4

S

576

H

Canindé 11

P13-009

4

S

576

H

Canindé 11

P14-025

4

S

576

H

CD 104

P14-039

4

S

576

H

Itapúa 70

P13-009

4

S

576

H

Itapúa 40

P14-025

4

S

576

H

Itapúa 40

P13-009

4

S

576

H

Itapúa 75

P13-009

4

S

576

H

ITAPUA 75/WEBILL2

P14-025

4

S

576

H

ITAPUA 75/WEBILL2

P13-009

4

S

576

H

ITAPUA 40 /IAN 10

P13-009

4

S

576

H

GRALHA AZUL

P13-009

4

S

576

H

BRS Tangara

P13-009

4

S

576

H

FUNDACEP 6219

P14-025

4

S

576

H

IPR 144

P14-039

4

S

576

H

IPR 144

P13-009

4

S

576

H

GRALHA AZUL

P14-039

4

S

576

H

xMeans with common letters are not significantly different (p>0.05).

H = 368,57 p <0.0001.

R=Resistant, MR=Moderately resistant, MS= Moderately susceptible, S= Susceptible.

It should be noted that Canindé 1 was resistant to the three pathogen isolates, while CD 116, its sister line derived from the same genealogy, was resistant to one of the isolates (P13-009) and moderately resistant to the other two (P14-025 and P14-039). Considering that both varieties are derived from the Milan line, which contains the 2NS segment that confers resistance to the disease (Kohli et al., 2011; Cruz et al., 2016), the difference in their reactions is due to their genetic background, which can vary during the process of selecting a progeny. It is also important to highlight the moderate resistance of the TBIO Sintonía variety to the three isolates used. The susceptible and/or moderately susceptible reaction of most wheat varieties sown in Paraguay could be a warning that strong epidemics could occur under favorable conditions. Evaluation under controlled conditions is valuable as a reference for genetic improvement activities aimed at selecting resistant materials to wheat blast mildew, but it is possible that the varieties may react differently under field conditions. The difference in the varieties’ performance under field conditions and when inoculated in the greenhouse has already been observed by Igarashi (1990) and Urashima and Kato (1994) and is attributed to the pathogenic variability of the fungus (Urashima et al., 2004). In Paraguay, Kohli et al. (2012) reported the reaction of varieties Canindé 3, Canindé 11, Canindé 12, Canindé 13, Itapúa 40 and Itapúa 70 as moderately susceptible to susceptible in the field, while Canindé 1 and Itapúa 75 were moderately resistant. Except for Itapúa 75, a long-cycle variety, the reactions observed in the field coincided with those observed in this study under controlled greenhouse conditions. In Brazil, Fronza et al. (2016) observed that varieties QUARTZO, FUNDACEP RAICES, BRS 220 and IPR 85 are moderately resistant under field conditions. In the present study, these varieties were classified as moderately susceptible and susceptible to the three isolates. However, both studies agree on the resistance of variety CD 116. Considering that environmental conditions play an important role in the expression of the disease in the field, it is necessary to evaluate the resistance of genetic materials while controlling the spectrum of environmental conditions and widening the pathogen’s variability under controlled conditions.

This study shows the susceptibility of most of the wheat varieties sown in Paraguay, both local and foreign, which means that they would be vulnerable to severe wheat blast epidemics under favorable conditions. It also shows the first evidence of the interactions that may exist between wheat varieties and different isolates of the Magnaporthe oryzae pathotype Triticum fungus. For this reason, it is urgent to identify and introduce new resistance sources in the improvement program in order to increase the number of resistant varieties in the future.

Acknowledgments

To Consejo Nacional de Ciencia y Tecnología (CONACYT)-Paraguay for their financial support through the PROCIENCIA Program.

REFERENCES

Chávez A, Cazal C, Rojas A, Guillén A, Núñez A y Kohli M. 2015. Evaluación de la concentración de conidios para la inoculación de materiales de trigo con Magnaporthe grisea. Pp:168-169. In: Memorias del I Congreso Agrario del IPTA. Trabajos de investigación. Encarnación, Paraguay. Instituto Paraguayo de Tecnología Agraria. Disponible en línea: https://bibliotecadeamag.wikispaces.com/file/view/TRABAJOS+DE +INVESTIGACI%C3%93N.pdfLinks ]

Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubkovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD and Valent B. 2016. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Science 56:990-1000. Disponible en línea: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087972/pdf/nihms825306.pdfLinks ]

Cunfer BM, Yorinori T and Igarashi S. 1993. Wheat blast. Pp:125-128. In: Mathur SB, Cunfer BM (eds.). Seed borne diseases and seed health testing of wheat. Danish Government Institute of Seed Pathology for Developing Countries. Copenhagen. [ Links ]

Cunha, JMF, Nicolau M, Pavan WM, Amaral C, Karrei M, de Vargas F, Boeira JL, Tagliari A and Tsukahara R. 2017. A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Tropical plant pathology 42: 230-237. http://dx.doi.org/10.1007/s40858-017-0164-2 [ Links ]

Fronza V, Moresco ER, Maciel JLN, Silva MS, Scheeren PL and Soares Sobrinho J. 2016. Reaction of Brazilian wheat cultivars to wheat blast in the Cerrado Región. Pp:142. In: Madeiros Del Ponte E, Bergstrom G, Pavan W, Lazzaretti A, Cunha Fernandes JM. (eds.) Book of Abstracts. 5th International Symposium on Fusarium head blight. 2nd International Workshop on Wheat Blast. Universidade de Paso Fondo, RS. BR. Disponible en línea: http://mosaico.upf.br/~events/scabandblastofwheat-book.pdfLinks ]

Igarashi S, Utimada C.M, Igarashi LC, Kazuma AE e Lopes RC. 1986. Pyricularia sp. em trigo. I. Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatologia Brasileira 11:351-352. [ Links ]

Igarashi, S. 1990. Update on wheat blast (Pyricularia oryzae) in Brazil. Pp:480-483. In: Saunders, DA (Ed.) Proceeding of the International Conference-Wheat for the nontraditional warm areas. CIMMYT. México, MX. [ Links ]

Kohli MM, Mehta YR, Guzman, E, Viedma L and Cubilla L. 2011. Pyricularia blast- A threat to wheat cultivation. Czech Journal of Genetics and Plant Breeding 47:S130-S134. (Special Issue). Disponible en línea: http://www.agriculturejournals.cz/publicFiles/48968.pdfLinks ]

Kohli M, Cabrera G y Cubilla L. 2012. Guía práctica para el manejo y la producción de Trigo. IPTA/CAPECO/INBIO. 52 p. Disponible en línea: http://www.inbio.org.py/uploads/Gui%CC%81a_pra%CC%81ctica_para_el_manejo_y_la_produccio%CC%81n_de_trigo_2012.pdfLinks ]

Marangoni M, Nunes M, Fonseca N and Metha Y. 2013. Pyricularia blast on white oats: a new threat to wheat cultivation. Tropical Plant Pathology 38:198-202. http://dx.doi.org/10.1590/S1982-56762013005000004 [ Links ]

Tagle AG, Chuma I and Tosa Y. 2014. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495-499. https://doi.org/10.1094/PHYTO-06-14-0182-R [ Links ]

Urashima AS and Kato H. 1994. Varietal resistance and chemical control of wheat blast fungus. Summa Phytopathologica 20:107-112. [ Links ]

Urashima AS, Lavorent NA, Goulart ACP and Metha YR. 2004. Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatologia Brasileira 29:511-518. http://dx.doi.org/10.1590/S0100-41582004000500007 [ Links ]

Viedma LQ y Morel W. 2002. Añublo o Piricularia del Trigo. Díptico. MAG/DIA/CRIA. Programa de Investigación de Trigo, CRIA, Capitán Miranda, Itapúa. [ Links ]

Received: December 14, 2017; Accepted: February 02, 2018

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons